scholarly journals Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations

2014 ◽  
Vol 26 (5) ◽  
pp. 053305 ◽  
Author(s):  
D. Vescovi ◽  
D. Berzi ◽  
P. Richard ◽  
N. Brodu
2015 ◽  
Vol 775 ◽  
pp. 24-52 ◽  
Author(s):  
Y. Guo ◽  
C. Wassgren ◽  
B. Hancock ◽  
W. Ketterhagen ◽  
J. Curtis

In this study, shear flows of dry flexible fibres are numerically modelled using the discrete element method (DEM), and the effects of fibre properties on the flow behaviour and solid-phase stresses are explored. In the DEM simulations, a fibre is formed by connecting a number of spheres in a straight line using deformable and elastic bonds. The forces and moments induced by the bond deformation resist the relative normal, tangential, bending and torsional movements between two bonded spheres. The bond or deforming stiffness determines the flexibility of the fibres and the bond damping accounts for the energy dissipation in the fibre vibration. The simulation results show that elastically bonded fibres have smaller effective coefficients of restitution than rigidly connected fibres. Thus, smaller solid-phase stresses are obtained for flexible fibres, particularly with bond damping, compared with rigid fibres. Frictionless fibres tend to align with a small angle from the flow direction as the solid volume fraction increases, and fibre deformation is minimized due to the alignment. However, jamming, with a corresponding sharp stress increase, large fibre deformation and dense contact force network, occurs for fibres with friction at high solid volume fractions. It is also found that jamming is more prevalent in dense flows with larger fibre friction coefficient, rougher surface, larger stiffness and larger aspect ratio.


2017 ◽  
Vol 832 ◽  
pp. 345-382 ◽  
Author(s):  
Kevin M. Kellogg ◽  
Peiyuan Liu ◽  
Casey Q. LaMarche ◽  
Christine M. Hrenya

The continuum description of rapid cohesive-particle flows comprises the population balance, which tracks various agglomerate sizes in space and time, and kinetic-theory-based balances for momentum and granular energy. Here, fundamental closures are provided in their most general form. In previous population balances, the probability (‘success factor’) that a given collision results in agglomeration or breakage has been set to a constant even though it is well established that the outcome of a collision depends on the impact (relative) velocity. Here, physically based closures that relate the success factors to the granular temperature, a (continuum) measure of the impact velocity, are derived. A key aspect of this derivation is the recognition that the normal component of the impact velocity dictates whether agglomeration occurs. With regard to the kinetic-theory balances, cohesion between particles makes the collisions more dissipative, thereby decreasing the granular temperature. The extra dissipation due to cohesion is accounted for using an effective coefficient of restitution, again determined using the derived distribution of normal impact velocities. This collective treatment of the population and kinetic-theory balances results in a general set of equations that contain several parameters (e.g. critical velocities of agglomeration) that are cohesion-specific (van der Waals, liquid bridging, etc.). The determination of these cohesion-specific quantities using simple discrete element method simulations, as well as validation of the resulting theory, is also presented.


2012 ◽  
Vol 14 (3) ◽  
pp. 363-380 ◽  
Author(s):  
Stephen R. Schwartz ◽  
Derek C. Richardson ◽  
Patrick Michel

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1841
Author(s):  
Yi Liu ◽  
Zhaosheng Yu ◽  
Jiecheng Yang ◽  
Carl Wassgren ◽  
Jennifer Sinclair Curtis ◽  
...  

The effects of particle shape differences on binary mixture shear flows are investigated using the Discrete Element Method (DEM). The binary mixtures consist of frictionless rods and disks, which have the same volume but significantly different shapes. In the shear flows, stacking structures of rods and disks are formed. The effects of the composition of the mixture on the stacking are examined. It is found that the number fraction of stacking particles is smaller for the mixtures than for the monodisperse rods and disks. For binary mixtures with small particle shape differences, the mixture stresses are bounded by the stresses of the two corresponding monodisperse systems. However, for binary mixtures with large particle shape differences, the stresses of the mixtures can be larger than the stresses of the monodisperse systems at large solid volume fractions because larger differences in particle shape cause geometrical interference in packing, leading to stronger particle–particle interactions in the flow. The stresses in dense binary mixtures are found to be exponential functions of the order parameter, which is a measure of particle alignment. Based on the simulation results, an empirical expression for the bulk friction coefficient (ratio of the shear stress to normal stress) for dense binary flows is proposed by accounting for the effects of particle alignment and solid volume fraction.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document