Clustering Air Monitoring Stations According to Background and Ambient Pollution Using Hidden Markov Models and Multidimensional Scaling

Author(s):  
Álvaro Gómez-Losada
2007 ◽  
Vol 19 (4) ◽  
pp. 444-447 ◽  
Author(s):  
Yusuke Maeda ◽  
◽  
Tatsuya Ushioda ◽  

In modeling human movement using hidden Markov models (HMM), the “optimal” HMM with an appropriate number of states is determined based on the minimum description length (MDL) criterion. Human pivoting, typifying graspless manipulation, is modeled using Gaussian mixture HMMs. Analyzing the obtained HMMs using metric multidimensional scaling (MDS) showed the features of individual movement. Such dissimilarity analysis can be used to validate models of tacit skills in human manipulation.


2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document