Phase Field Models for Two-Phase Flow with Surfactants and Biomembranes

Author(s):  
Sebastian Aland
2018 ◽  
Vol 108 ◽  
pp. 169-180 ◽  
Author(s):  
Nazia Talat ◽  
Boštjan Mavrič ◽  
Grega Belšak ◽  
Vanja Hatić ◽  
Saša Bajt ◽  
...  

2013 ◽  
Vol 2013.26 (0) ◽  
pp. _1618-1_-_1618-2_
Author(s):  
Tetsuya Sakakibara ◽  
Tomohiro Takaki ◽  
Masaki Kurata

2020 ◽  
Author(s):  
Huhao Gao ◽  
Alexandru Tatomir ◽  
Nikolaos Karadimitriou ◽  
Martin Sauter

<p>Over the last few years, our understanding of the processes involved in the application of Kinetic Interfacial Sensitive (KIS) tracers in two-phase flow as a means to quantify the fluid-fluid interfacial area has been enhanced with the use of controlled column experiments (Tatomir et al. 2015,2018). However, there are still some open questions regarding the effect of immobile water, either as capillary and dead-end trapped water or as a film, and the measured by product concentration at the outflow.</p><p>In this study, a new pore-scale reactive transport model is presented, based on the phase-field method, which is able to deal with the KIS tracer interfacial reaction and selective distribution of the by-production into the water phase. The model is validated by comparing the analytical solutions for a diffusion process across the interface and a reaction-diffusion process, and is tested for a drainage process in a capillary tube for different Péclet numbers. The applicability of the model is demonstrated in a realistic 2D porous medium NAPL/water drainage scenario used in the literature. Four case studies are investigated in detail to obtain macroscopic parameters, like saturation, capillary pressure, specific interfacial area, and concentration, for a number of combinations between the inflow rate, the contact angle and diffusivity. We derive a relation between the by-product mass at the outflow and the mobile part of the interfacial area, which is formulated by adding a residual factor. This term relates to the part of the by-product produced by mobile interface that becomes residual in the immobile zones.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jinhui Liu ◽  
Yang Ju ◽  
Yingqi Zhang ◽  
Wenbo Gong

Abstract Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures.


Sign in / Sign up

Export Citation Format

Share Document