Leisler’s Noctule Nyctalus leisleri (Kuhl, 1817)

Author(s):  
Emma S. M. Boston ◽  
Dina K. N. Dechmann ◽  
Ireneusz Ruczynski
Keyword(s):  
Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 785-807 ◽  
Author(s):  
Ladislav Naďo ◽  
Renáta Chromá ◽  
Peter Kaňuch

Social groups of bats that operate under fission–fusion dynamics tend to establish and maintain non-random associations. We examined the social and genetic structure of the Leisler’s bat (Nyctalus leisleri), a species that is typical of tree-dwelling and long-distance migratory species in Europe. We used long-term co-occurrence data (capture-recapture sampling of roosting individuals) in combination with individual genetic relatedness (inferred from a set of microsatellite markers) to assess relationships between structural, temporal and genetic properties of roosting groups. Our results showed that social structure in groups of roosting Leisler’s bat was not random. Social clusters revealed by network analysis were almost identical to demographic cohorts, which indicates that Leisler’s bats are able to maintain social bonds only over a single season. After the period of active maternal care, roosting groups became smaller with a significantly higher level of genetic relatedness among adult females in contrast to the pregnancy and lactation stages. This provides some evidence that temporal social associations may be positively correlated with genetic relatedness. Low recapture rates of bats across seasons in light of natal philopatry indicates a shorter life span of individuals likely due to high mortality during long distance migratory movements. This probably has the most significant effect on the social system of this species.


2010 ◽  
Vol 84 (21) ◽  
pp. 11336-11349 ◽  
Author(s):  
Jan Felix Drexler ◽  
Florian Gloza-Rausch ◽  
Jörg Glende ◽  
Victor Max Corman ◽  
Doreen Muth ◽  
...  

ABSTRACT Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4 × 108 copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV.


2015 ◽  
Vol 370 (1667) ◽  
pp. 20140124 ◽  
Author(s):  
Fiona Mathews ◽  
Niamh Roche ◽  
Tina Aughney ◽  
Nicholas Jones ◽  
Julie Day ◽  
...  

Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements—both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts—bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered ‘light-attracted’ and likely to benefit from the insect congregations that form at lights. Leisler's bat ( Nyctalus leisleri ) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats ( Pipistrellus pipistrellus ), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability.


Mammalia ◽  
1950 ◽  
Vol 14 (1) ◽  
Author(s):  
L. HARRISON MATTHEWS
Keyword(s):  

2008 ◽  
Vol 10 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Martina Spada ◽  
Susanne Szentkuti ◽  
Nicola Zambelli ◽  
Marzia Mattei-Roesli ◽  
Marco Moretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document