Conservation of Hardwood Forest Species

Author(s):  
E. Corredoira ◽  
M. T. Martínez ◽  
M. C. Sanjosé ◽  
A. Ballester
1999 ◽  
Vol 29 (3) ◽  
pp. 339-346 ◽  
Author(s):  
M A Arthur ◽  
T G Siccama ◽  
R D Yanai

Improving estimates of the nutrient content of boles in forest ecosystems requires more information on how the chemistry of wood varies with characteristics of the tree and site. We examined Ca and Mg concentrations in wood at the Hubbard Brook Experimental Forest. Species examined were the dominant tree species of the northern hardwood forest and the spruce-fir forest. The concentrations of Ca and Mg, respectively, in lightwood of these species, mass weighted by elevation, were 661 and 145 µg/g for sugar maple (Acer saccharum Marsh.), 664 and 140 µg/g for American beech (Fagus grandifolia Ehrh.), 515 and 93 µg/g for yellow birch (Betula alleghaniensis Britt.), 525 and 70 µg/g for red spruce (Picea rubens Sarg.), 555 and 118 µg/g for balsam fir (Abies balsamea (L.) Mill.), and 393 and 101 µg/g for white birch (Betula papyrifera Marsh.). There were significant patterns in Ca and Mg concentrations with wood age. The size of the tree was not an important source of variation. Beech showed significantly greater concentrations of both Ca (30%) and Mg (33%) in trees growing in moist sites relative to drier sites; sugar maple and yellow birch were less sensitive to mesotopography. In addition to species differences in lightwood chemistry, Ca and Mg concentrations in wood decreased with increasing elevation, coinciding with a pattern of decreasing Ca and Mg in the forest floor. Differences in Ca and Mg concentration in lightwood accounted for by elevation ranged from 12 to 23% for Ca and 16 to 30% for Mg for the three northern hardwood species. At the ecosystem scale, the magnitude of the elevational effect on lightwood chemistry, weighted by species, amounts to 18% of lightwood Ca in the watershed and 24% of lightwood Mg but only 2% of aboveground biomass Ca and 7% of aboveground Mg.


2007 ◽  
Vol 36 (4) ◽  
pp. 766-775 ◽  
Author(s):  
Aaron M. Ellison ◽  
Sydne Record ◽  
Alexander Arguello ◽  
Nicholas J. Gotelli

1997 ◽  
Author(s):  
Stephen G. Pallardy ◽  
Robert A. Cecich ◽  
H. Eugene Garrett ◽  
Paul S. Johnson
Keyword(s):  

1993 ◽  
Author(s):  
Andrew R. Gillespie ◽  
George R. Parker ◽  
Phillip E. Pope ◽  
George Rink
Keyword(s):  

1999 ◽  
Author(s):  
Jeffrey W. Stringer ◽  
David L. Loftis ◽  
Michael Lacki ◽  
Thomas Barnes ◽  
Robert A. Muller
Keyword(s):  

2009 ◽  
Vol 160 (11) ◽  
pp. 334-340 ◽  
Author(s):  
Pierre Mollet ◽  
Niklaus Zbinden ◽  
Hans Schmid

Results from the monitoring programs of the Swiss Ornithological Institute show that the breeding populations of several forest species for which deadwood is an important habitat element (black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker, green woodpecker, three-toed woodpecker as well as crested tit, willow tit and Eurasian tree creeper) have increased in the period 1990 to 2008, although not to the same extent in all species. At the same time the white-backed woodpecker extended its range in eastern Switzerland. The Swiss National Forest Inventory shows an increase in the amount of deadwood in forests for the same period. For all the mentioned species, with the exception of green and middle spotted woodpecker, the growing availability of deadwood is likely to be the most important factor explaining this population increase.


Sign in / Sign up

Export Citation Format

Share Document