Breaking the Stereotypical Dogma of Artificial Neural Networks with Cartesian Genetic Programming

Author(s):  
Gul Muhammad Khan ◽  
Arbab Masood Ahmad
Author(s):  
Daniel Rivero ◽  
Miguel Varela ◽  
Javier Pereira

A technique is described in this chapter that makes it possible to extract the knowledge held by previously trained artificial neural networks. This makes it possible for them to be used in a number of areas (such as medicine) where it is necessary to know how they work, as well as having a network that functions. This chapter explains how to carry out this process to extract knowledge, defined as rules. Special emphasis is placed on extracting knowledge from recurrent neural networks, in particular when applied in predicting time series.


2005 ◽  
Vol 01 (01) ◽  
pp. 79-107 ◽  
Author(s):  
MAK KABOUDAN

Applying genetic programming and artificial neural networks to raw as well as wavelet-transformed exchange rate data showed that genetic programming may have good extended forecasting abilities. Although it is well known that most predictions of exchange rates using many alternative techniques could not deliver better forecasts than the random walk model, in this paper employing natural computational strategies to forecast three different exchange rates produced two extended forecasts (that go beyond one-step-ahead) that are better than naïve random walk predictions. Sixteen-step-ahead forecasts obtained using genetic programming outperformed the one- and sixteen-step-ahead random walk US dollar/Taiwan dollar exchange rate predictions. Further, sixteen-step-ahead forecasts of the wavelet-transformed US dollar/Japanese Yen exchange rate also using genetic programming outperformed the sixteen-step-ahead random walk predictions of the exchange rate. However, random walk predictions of the US dollar/British pound exchange rate outperformed all forecasts obtained using genetic programming. Random walk predictions of the same three exchange rates employing raw and wavelet-transformed data also outperformed all forecasts obtained using artificial neural networks.


Sign in / Sign up

Export Citation Format

Share Document