cartesian genetic programming
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 59)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Zhao

Because most of the traditional artistic visual image communication methods use the form of modeling and calculation, there are some problems such as long image processing time, low success rate of image visual communication, and poor visual effect. An artistic visual image communication method based on Cartesian genetic programming is proposed. The visual expression sensitivity difference method is introduced to process the image data, the neural network is used to identify the characteristics of the artistic visual image, the midpoint displacement method is used to remove the folds of the artistic visual image, and the processed image is formed under the above three links. The Cartesian genetic programming algorithm is used to encode the preprocessed image, improve the fitness function, select the algorithm to improve the operation, design the image rendering platform, input the processed image to the platform, and complete the artistic visual image transmission. The analysis of the experimental results shows that the image processing time of this method is short, the success rate of visual communication is high, and the image visual effect is good, which can obtain the image processing results satisfactory to users.


2021 ◽  
Author(s):  
Mihai Oltean ◽  
D. Dumitrescu

Abstract Multi Expression Programming (MEP) is a new evolutionary paradigm intended for solving computationally difficult problems. MEP individuals are linear entities that encode complex computer programs. MEP chromosomes are represented in the same way as C or Pascal compilers translate mathematical expressions into machine code. MEP is used for solving some difficult problems like symbolic regression and game strategy discovering. MEP is compared with Gene Expression Programming (GEP) and Cartesian Genetic Programming (CGP) by using several well-known test problems. For the considered problems MEP outperforms GEP and CGP. For these examples MEP is two magnitude orders better than CGP.


2021 ◽  
Author(s):  
Mihai Oltean ◽  
D. Dumitrescu

Abstract Multi Expression Programming (MEP) is a new evolutionary paradigm intended for solving computationally difficult problems. MEP individuals are linear entities that encode complex computer programs. MEP chromosomes are represented in the same way as C or Pascal compilers translate mathematical expressions into machine code. MEP is used for solving some difficult problems like symbolic regression and game strategy discovering. MEP is compared with Gene Expression Programming (GEP) and Cartesian Genetic Programming (CGP) by using several well-known test problems. For the considered problems MEP outperforms GEP and CGP. For these examples MEP is two magnitude orders better than CGP.


2021 ◽  
Author(s):  
Augusto Berndt ◽  
Isac S. Campos ◽  
Bryan Lima ◽  
Mateus Grellert ◽  
Jonata T. Carvalho ◽  
...  

2021 ◽  
Author(s):  
Ahmad T. Anaqreh ◽  
Boglárka G.-Tóth ◽  
Tamás Vinkó

Graph properties are certain attributes that could make the structure of the graph understandable. Occasionally, standard methods cannot work properly for calculating exact values of graph properties due to their huge computational complexity, especially for real-world graphs. In contrast, heuristics and metaheuristics are alternatives proved their ability to provide sufficient solutions in a reasonable time. Although in some cases, even heuristics are not efficient enough, where they need some not easily obtainable global information of the graph. The problem thus should be dealt in completely different way by trying to find features that related to the property and based on these data build a formula which can approximate the graph property. In this work, symbolic regression with an evolutionary algorithm called Cartesian Genetic Programming has been used to derive formulas capable to approximate the graph geodetic number which measures the minimal-cardinality set of vertices, such that all shortest paths between its elements cover every vertex of the graph. Finding the exact value of the geodetic number is known to be NP-hard for general graphs. The obtained formulas are tested on random and real-world graphs. It is demonstrated how various graph properties as training data can lead to diverse formulas with different accuracy. It is also investigated which training data are really related to each property.


Sign in / Sign up

Export Citation Format

Share Document