scholarly journals Long-Term Seismic Quiescences and Great Earthquakes in and Around the Japan Subduction Zone Between 1975 and 2012

Author(s):  
Kei Katsumata
2021 ◽  
Author(s):  
Irina Vladimirova ◽  
Yurii Gabsatarov ◽  
Grigory Steblov ◽  
Leopold Lobkovsky

<p>The subduction zone is a natural laboratory for studying the seismic cycle. On March 11, 2011, in the central part of the Japan subduction zone, the strongest Mw=9.0 Tohoku earthquake occurred, terminating a seismic cycle that lasted about 1200 years. We analyzed two decades of GNSS observations at 1400 GEONET stations to reveal the peculiarities of the tectonic and rheological structure of the Japan subduction zone which driven such a long-term seismic cycle. We consider GNSS data within the framework of a generalized approach, including the assessment of the coupling of the interplate interface before the earthquake, the construction of a model of the distributed displacement in the source zone, and the study of postseismic processes characterizing the relaxation of elastic stresses in the vicinity of the source.</p><p>As a result, we found that in the last year before the earthquake, there was an increase in the rates of elastic deformation of the continental margin and a corresponding increase in the interplate coupling. To study the process of the release of elastic energy during the Tohoku earthquake, we built a model of the distributed slip in the source. We used different earth models during inversion of GNSS data to study the impact of the regional tectonic and rheological structure and confirm the resilience of our inversion technique. We used GNSS data to build a model of pure afterslip in the first six months after the Tohoku earthquake and a model of afterslip combined with the short-term viscoelastic relaxation to estimate the relative contributions of these postseismic processes to the observed displacement field. Long-term postseismic time series of GNSS displacements were used to build the model of viscoelastic relaxation in the asthenosphere following the Tohoku earthquake. To estimate the transition time of the subduction zone to the steady-state of elastic stress accumulation we constructed a forecast of attenuation of viscoelastic stresses in the asthenosphere on the basis of our viscoelastic relaxation model.</p><p>We also studied the possible block structure of the Japanese Islands and its impact on the seismic cycle performing cluster analysis of GNSS displacement data at different stages of the seismic cycle.</p><p>This study was supported by the Russian Science Foundation (project 20–17-00140).</p>


Science ◽  
1990 ◽  
Vol 250 (4985) ◽  
pp. 1248-1251 ◽  
Author(s):  
M. K.-F. Ng ◽  
P. H. Leblond ◽  
T. S. Murty

2017 ◽  
Vol 44 (18) ◽  
pp. 9283-9292 ◽  
Author(s):  
Jorge Jara ◽  
Anne Socquet ◽  
David Marsan ◽  
Michel Bouchon

2006 ◽  
Vol 14 (2) ◽  
pp. 181-191 ◽  
Author(s):  
M.-A. GUTSCHER

Great earthquakes and tsunami can have a tremendous societal impact. The Lisbon earthquake and tsunami of 1755 caused tens of thousands of deaths in Portugal, Spain and NW Morocco. Felt as far as Hamburg and the Azores islands, its magnitude is estimated to be 8.5–9. However, because of the complex tectonics in Southern Iberia, the fault that produced the earthquake has not yet been clearly identified. Recently acquired data from the Gulf of Cadiz area (tomography, seismic profiles, high-resolution bathymetry, sampled active mud volcanoes) provide strong evidence for an active east dipping subduction zone beneath Gibraltar. Eleven out of 12 of the strongest earthquakes (M>8.5) of the past 100 years occurred along subduction zone megathrusts (including the December 2004 and March 2005 Sumatra earthquakes). Thus, it appears likely that the 1755 earthquake and tsunami were generated in a similar fashion, along the shallow east-dipping subduction fault plane. This implies that the Cadiz subduction zone is locked (like the Cascadia and Nankai/Japan subduction zones), with great earthquakes occurring over long return periods. Indeed, the regional paleoseismic record (contained in deep-water turbidites and shallow lagoon deposits) suggests great earthquakes off South West Iberia every 1500–2000 years. Tsunami deposits indicate an earlier great earthquake struck SW Iberia around 200 BC, as noted by Roman records from Cadiz. A written record of even older events may also exist. According to Plato's dialogues The Critias and The Timaeus, Atlantis was destroyed by ‘strong earthquakes and floods … in a single day and night’ at a date given as 11,600 BP. A 1 m thick turbidite deposit, containing coarse grained sediments from underwater avalanches, has been dated at 12,000 BP and may correspond to the destructive earthquake and tsunami described by Plato. The effects on a paleo-island (Spartel) in the straits of Gibraltar would have been devastating, if inhabited, and may have formed the basis for the Atlantis legend.


Sign in / Sign up

Export Citation Format

Share Document