Liouville Property of Harmonic Functions of Finite Energy for Dirichlet Forms

Author(s):  
Masatoshi Fukushima
Author(s):  
Zhen-Qing Chen ◽  
Masatoshi Fukushima

This chapter turns to reflected Dirichlet spaces. It first introduces the notion of terminal random variables and harmonic functions of finite energy for a Hunt process associated with a transient regular Dirichlet form. The chapter next establishes several equivalent notions of reflected Dirichlet space (ℰ ref,ℱ ref) for a regular transient Dirichlet form (E,F). One of these equivalent notions is then used to define reflected Dirichlet space for a regular recurrent Dirichlet form. Moreover, the chapter gives yet another equivalent definition of reflected Dirichlet space that is invariant under quasi-homeomorphism of Dirichlet forms. Various concrete examples of reflected Dirichlet spaces are also exhibited for regular Dirichlet forms. Finally, the chapter defines a Silverstein extension of a quasi-regular Dirichlet form (E,F) on L²(E; m) and investigates the equivalence of analytic and probabilistic concepts of harmonicity.


2009 ◽  
Vol 29 (4) ◽  
pp. 1141-1161
Author(s):  
S. FENLEY ◽  
R. FERES ◽  
K. PARWANI

AbstractLet (M,ℱ) be a compact codimension-one foliated manifold whose leaves are endowed with Riemannian metrics, and consider continuous functions on M that are harmonic along the leaves of ℱ. If every such function is constant on leaves, we say that (M,ℱ) has the Liouville property. Our main result is that codimension-one foliated bundles over compact negatively curved manifolds satisfy the Liouville property. A related result for ℝ-covered foliations is also established.


2016 ◽  
Vol 16 (02) ◽  
pp. 1660001
Author(s):  
Pablo Lessa

We introduce the notion of a stationary random manifold and develop the basic entropy theory for it. Examples include manifolds admitting a compact quotient under isometries and generic leaves of a compact foliation. We prove that the entropy of an ergodic stationary random manifold is zero if and only if the manifold satisfies the Liouville property almost surely, and is positive if and only if it admits an infinite dimensional space of bounded harmonic functions almost surely. Upper and lower bounds for the entropy are provided in terms of the linear drift of Brownian motion and average volume growth of the manifold. Other almost sure properties of these random manifolds are also studied.


2018 ◽  
Vol 123 (1) ◽  
pp. 5-38
Author(s):  
Palle Jorgensen ◽  
Feng Tian

We consider infinite weighted graphs $G$, i.e., sets of vertices $V$, and edges $E$ assumed countably infinite. An assignment of weights is a positive symmetric function $c$ on $E$ (the edge-set), conductance. From this, one naturally defines a reversible Markov process, and a corresponding Laplace operator acting on functions on $V$, voltage distributions. The harmonic functions are of special importance. We establish explicit boundary representations for the harmonic functions on $G$ of finite energy.We compute a resistance metric $d$ from a given conductance function. (The resistance distance $d(x,y)$ between two vertices $x$ and $y$ is the voltage drop from $x$ to $y$, which is induced by the given assignment of resistors when $1$ amp is inserted at the vertex $x$, and then extracted again at $y$.)We study the class of models where this resistance metric is bounded. We show that then the finite-energy functions form an algebra of ${1}/{2}$-Lipschitz-continuous and bounded functions on $V$, relative to the metric $d$. We further show that, in this case, the metric completion $M$ of $(V,d)$ is automatically compact, and that the vertex-set $V$ is open in $M$. We obtain a Poisson boundary-representation for the harmonic functions of finite energy, and an interpolation formula for every function on $V$ of finite energy. We further compare $M$ to other compactifications; e.g., to certain path-space models.


Sign in / Sign up

Export Citation Format

Share Document