Third Order Mock Theta Functions: Partial Fraction Expansions

2018 ◽  
pp. 35-58
Author(s):  
George E. Andrews ◽  
Bruce C. Berndt
2019 ◽  
Vol 16 (02) ◽  
pp. 423-446 ◽  
Author(s):  
Nayandeep Deka Baruah ◽  
Nilufar Mana Begum

Recently, Andrews, Dixit and Yee introduced partition functions associated with Ramanujan/Watson third-order mock theta functions [Formula: see text] and [Formula: see text]. In this paper, we find several new exact generating functions for those partition functions as well as the associated smallest part functions and deduce several new congruences modulo powers of 5.


2018 ◽  
Vol 239 ◽  
pp. 173-204 ◽  
Author(s):  
GEORGE E. ANDREWS ◽  
BRUCE C. BERNDT ◽  
SONG HENG CHAN ◽  
SUN KIM ◽  
AMITA MALIK

In 2005, using a famous lemma of Atkin and Swinnerton-Dyer (Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84–106), Yesilyurt (Four identities related to third order mock theta functions in Ramanujan’s lost notebook, Adv. Math. 190 (2005), 278–299) proved four identities for third order mock theta functions found on pages 2 and 17 in Ramanujan’s lost notebook. The primary purpose of this paper is to offer new proofs in the spirit of what Ramanujan might have given in the hope that a better understanding of the identities might be gained. Third order mock theta functions are intimately connected with ranks of partitions. We prove new dissections for two rank generating functions, which are keys to our proof of the fourth, and the most difficult, of Ramanujan’s identities. In the last section of this paper, we establish new relations for ranks arising from our dissections of rank generating functions.


Author(s):  
Hannah Burson

We introduce combinatorial interpretations of the coefficients of two second-order mock theta functions. Then, we provide a bijection that relates the two combinatorial interpretations for each function. By studying other special cases of the multivariate identity proved by the bijection, we obtain new combinatorial interpretations for the coefficients of Watson’s third-order mock theta function [Formula: see text] and Ramanujan’s third-order mock theta function [Formula: see text].


2019 ◽  
Vol 30 (04) ◽  
pp. 1950023
Author(s):  
Bin Chen

Ramanujan gave a list of seventeen functions which he called mock theta functions. For one of the third-order mock theta functions [Formula: see text], he claimed that as [Formula: see text] approaches an even order [Formula: see text] root of unity [Formula: see text], then [Formula: see text] He also pointed at the existence of similar properties for other mock theta functions. Recently, [J. Bajpai, S. Kimport, J. Liang, D. Ma and J. Ricci, Bilateral series and Ramanujan’s radial limits, Proc. Amer. Math. Soc. 143(2) (2014) 479–492] presented some similar Ramanujan radial limits of the fifth-order mock theta functions and their associated bilateral series are modular forms. In this paper, by using the substitution [Formula: see text] in the Ramanujan’s mock theta functions, some associated false theta functions in the sense of Rogers are obtained. Such functions can be regarded as Eichler integral of the vector-valued modular forms of weight [Formula: see text]. We find two associated bilateral series of the false theta functions with respect to the fifth-order mock theta functions are special modular forms. Furthermore, we explore that the other two associated bilateral series of the false theta functions with respect to the third-order mock theta functions are mock modular forms. As an application, the associated Ramanujan radial limits of the false theta functions are constructed.


2019 ◽  
Vol 16 (01) ◽  
pp. 91-106
Author(s):  
Qiuxia Hu ◽  
Hanfei Song ◽  
Zhizheng Zhang

In [G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook, Part II (Springer, New York, 2009), Entry 3.4.7, p. 67; Y.-S. Choi, The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24(3) (2011) 345–386; B. Chen, Mock theta functions and Appell–Lerch sums, J. Inequal Appl. 2018(1) (2018) 156; E. Mortenson, Ramanujan’s radial limits and mixed mock modular bilateral [Formula: see text]-hypergeometric series, Proc. Edinb. Math. Soc. 59(3) (2016) 1–13; W. Zudilin, On three theorems of Folsom, Ono and Rhoades, Proc. Amer. Math. Soc. 143(4) (2015) 1471–1476], the authors found the bilateral series for the universal mock theta function [Formula: see text]. In [Choi, 2011], the author presented the bilateral series connected with the odd-order mock theta functions in terms of Appell–Lerch sums. However, the author only derived the associated bilateral series for the fifth-order mock theta functions. The purpose of this paper is to further derive different types of bilateral series for the third-order mock theta functions. As applications, the identities between the two-group bilateral series are obtained and the bilateral series associated to the third-order mock theta functions are in fact modular forms. Then, we consider duals of the second type in terms of Appell–Lerch sums and duals in terms of partial theta functions defined by Hickerson and Mortenson of duals of the second type in terms of Appell–Lerch sums of such bilateral series associated to some third-order mock theta functions that Chen did not discuss in [On the dual nature theory of bilateral series associated to mock theta functions, Int. J. Number Theory 14 (2018) 63–94].


Sign in / Sign up

Export Citation Format

Share Document