partial fraction
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Jay Mehta ◽  
P. -Y Zhu

In this article, we shall prove a result which enables us to transfer from finite to infinite Euler products. As an example, we give two new proofs of the infinite product for the sine function depending on certain decompositions. We shall then prove some equivalent expressions for the functional equation, i.e. the partial fraction expansion and the integral expression involving the generating function for Bernoulli numbers. The equivalence of the infinite product for the sine functions and the partial fraction expansion for the hyperbolic cotangent function leads to a new proof of the functional equation for the Riemann zeta function.


Author(s):  
Murat Koseoglu ◽  
Furkan Nur Deniz ◽  
Baris Baykant Alagoz ◽  
Ali Yuce ◽  
Nusret Tan

Abstract Analog circuit realization of fractional order (FO) elements is a significant step for the industrialization of FO control systems because of enabling a low-cost, electric circuit realization by means of standard industrial electronics components. This study demonstrates an effective operational amplifier-based analog circuit realization of approximate FO integral elements for industrial electronics. To this end, approximate transfer function models of FO integral elements, which are calculated by using Matsuda’s approximation method, are decomposed into the sum of low-pass filter forms according to the partial fraction expansion. Each partial fraction term is implemented by using low-pass filters and amplifier circuits, and these circuits are combined with a summing amplifier to compose the approximate FO integral circuits. Widely used low-cost industrial electronics components, which are LF347N opamps, resistor and capacitor components, are used to achieve a discrete, easy-to-build analog realization of the approximate FO integral elements. The performance of designed circuit is compared with performance of Krishna’s FO circuit design and performance improvements are shown. The study presents design, performance validation and experimental verification of this straightforward approximate FO integral realization method.


2021 ◽  
Vol 103 (3) ◽  
pp. 87-95
Author(s):  
M.I. Qureshi ◽  
◽  
J. Majid ◽  
A.H. Bhat ◽  
◽  
...  

In this article we obtain the summations of some infinite series by partial fraction method and by using certain hypergeometric summation theorems of positive and negative unit arguments, Riemann Zeta functions, polygamma functions, lower case beta functions of one-variable and other associated functions. We also obtain some hypergeometric summation theorems for: 8F7[9/2, 3/2, 3/2, 3/2, 3/2, 3, 3, 1; 7/2, 7/2, 7/2, 7/2, 1/2, 2, 2; 1], 5F4[5/3, 4/3, 4/3, 1/3, 1/3; 2/3, 1, 2, 2; 1], 5F4[9/4, 5/2, 3/2, 1/2, 1/2; 5/4, 2, 3, 3; 1], 5F4[13/8, 5/4, 5/4, 1/4, 1/4; 5/8, 2, 2, 1; 1], 5F4[1/2, 1/2, 5/2, 5/2, 1; 3/2, 3/2, 7/2, 7/2; −1], 4F3[3/2, 3/2, 1, 1; 5/2, 5/2, 2; 1], 4F3[2/3, 1/3, 1, 1; 7/3, 5/3, 2; 1], 4F3[7/6, 5/6, 1, 1; 13/6, 11/6, 2; 1] and 4F3[1, 1, 1, 1; 3, 3, 3; −1].


Author(s):  
Dževad Belkić ◽  
Karen Belkić

AbstractTime signals are measured experimentally throughout sciences, technologies and industries. Of particular interest here is the focus on time signals encoded by means of magnetic resonance spectroscopy (MRS). The great majority of generic time signals are equivalent to auto-correlation functions from quantum physics. Therefore, a quantum-mechanical theory of measurements of encoded MRS time signals is achievable by performing quantum-mechanical spectral analysis. When time signals are measured, such an analysis becomes an inverse problem (harmonic inversion) with the task of reconstruction of the fundamental frequencies and the corresponding amplitudes. These complex-valued nodal parameters are the building blocks of the associated resonances in the frequency spectrum. Customarily, the MRS literature reports on fitting some ad hoc mathematical expressions to a set of resonances in a Fourier spectrum to extract their positions, widths and heights. Instead, an alternative would be to diagonalize the so-called data matrix with the signal points as its elements and to extract the resonance parameters without varying any adjusting, free constants as these would be absent altogether. Such a data matrix (the Hankel matrix) is from the category of the evolution matrix in the Schrödinger picture of quantum mechanics. Therefore, the spectrum of this matrix, i.e. the eigenvalues and the corresponding amplitudes, as the Cauchy residues (that are the squared projections of the full wave functions of the system onto the initial state) are equivalent to the sought resonance parameters, just mentioned. The lineshape profile of the frequency-dependent quantum-mechanical spectral envelope is given by the Heaviside partial fraction sum. Each term (i.e. every partial fraction) in this summation represents a component lineshape to be assigned to a given molecule (metabolite) in the tissue scanned by MRS. This is far reaching, since such a procedure allows reconstruction of the most basic quantum-mechanical entities, e.g. the total wave function of the investigated system and its ’Hamiltonian’ (a generator of the dynamics), directly from the encoded time signals. Since quantum mechanics operates with abstract objects, it can be applied to any system including living species. For example, time signals measured from the brain of a human being can be analyzed along these lines, as has actually been done e.g. by own our research. In this way, one can arrive at a quantum-mechanical description of the dynamics of vital organs of the patient by retrieving the interactions as the most important parts of various pathways of the tissue functions and metabolism. Of practical importance is that the outlined quantum-mechanical prediction of the frequency spectrum coincides with the Padé approximant, which is in signal processing alternatively called the fast Padé transform (FPT) for nonderivative estimations. Further, there is a novelty called the derivative fast Padé transform (dFPT). The FPT and dFPT passed the test of time with three fundamentally different time signals, synthesized (noise-free, noise-contaminated) as well as encoded from phantoms and from patients. Such systematics are necessary as they permit robust and reliable benchmarkings of the theory in a manner which can build confidence of the physician, while interpreting the patient’s data and making the appropriate diagnosis. In the present study, we pursue further this road paved earlier by applying the FPT and dFPT (both as shape and parameter estimators) to time signals encoded by in vivo proton MRS from an ovarian tumor. A clinical 3T scanner is used for encoding at a short echo time (30 ms) at which most resonances have not reached yet their decay mode and, as such, could be detected to assist with diagnostics. We have two goals, mathematical and clinical. First, we want to find out whether particularly the nonparametric dFPT, as a shape estimator, can accurately quantify. Secondly, we want to determine whether this processor can provide reliable information for evaluating an ovarian tumor. From the obtained results, it follows that both goals have met with success. The nonparametric dFPT, from its onset as a shape estimator, transformed itself into a parameter estimator. Its quantification capabilities are confirmed by reproducing the components reconstructed by the parametric dFPT. Thereby, fully quantified information is provided to such a precise extent that a large number of sharp resonances (more than 160) appear as being well isolated and, thus, assignable to the known metabolites with no ambiguities. Importantly, some of these metabolites are recognized cancer biomarkers (e.g. choline, phosphocholine, lactate). Also, broader resonances assigned to macromolecules are quantifiable by a sequential estimation (after subtracting the formerly quantified sharp resonances and processing the residual spectrum by the nonparametric dFPT). This is essential too as the presence of macromolecules in nonoderivative envelopes deceptively exaggerates the intensities of sharper resonances and, hence, can be misleading for diagnostics. The dFPT, as the quantification-equipped shape estimator, rules out such possibilities as wider resonances can be separately quantified. This, in turn, helps make adequate assessment of the true yield from sharp resonances assigned to metabolites of recognized diagnostic relevance.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jun-Ming Zhu ◽  
Qiu-Ming Luo

AbstractIn this paper, by constructing contour integral and using Cauchy’s residue theorem, we provide a novel proof of Chu’s two partial fraction decompositions.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Bakul Agarwal ◽  
Federico Buccioni ◽  
Andreas von Manteuffel ◽  
Lorenzo Tancredi

Abstract We present the leading colour and light fermionic planar two-loop corrections for the production of two photons and a jet in the quark-antiquark and quark-gluon channels. In particular, we compute the interference of the two-loop amplitudes with the corresponding tree level ones, summed over colours and polarisations. Our calculation uses the latest advancements in the algorithms for integration-by-parts reduction and multivariate partial fraction decomposition to produce compact and easy-to-use results. We have implemented our results in an efficient C++ numerical code. We also provide their analytic expressions in Mathematica format.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minghui You

AbstractBy introducing a kernel involving an exponent function with multiple parameters, we establish a new Hilbert-type inequality and its equivalent Hardy form. We also prove that the constant factors of the obtained inequalities are the best possible. Furthermore, by introducing the Bernoulli number, Euler number, and the partial fraction expansion of cotangent function and cosecant function, we get some special and interesting cases of the newly obtained inequality.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Gao-Wen Xi ◽  
Qiu-Ming Luo

AbstractIn this paper, we give some extensions for Mortenson’s identities in series with the Bell polynomial using the partial fraction decomposition. As applications, we obtain some combinatorial identities involving the harmonic numbers.


2021 ◽  
Vol 9 (1) ◽  
pp. 149-165
Author(s):  
Alexander Kovačec

Abstract In the third part of his famous 1926 paper ‘Quantisierung als Eigenwertproblem’, Schrödinger came across a certain parametrized family of tridiagonal matrices whose eigenvalues he conjectured. A 1991 paper wrongly suggested that his conjecture is a direct consequence of an 1854 result put forth by Sylvester. Here we recount some of the arguments that led Schrödinger to consider this particular matrix and what might have led to the wrong suggestion. We then give a self-contained elementary (though computational) proof which would have been accessible to Schrödinger. It needs only partial fraction decomposition. We conclude this paper by giving an outline of the connection established in recent decades between orthogonal polynomial systems of the Hahn class and certain tridiagonal matrices with fractional entries. It also allows to prove Schrödinger’s conjecture.


Sign in / Sign up

Export Citation Format

Share Document