Fixed Point Results for Mixed Multivalued Mappings of Feng-Liu Type on M b -Metric Spaces

Author(s):  
Hakan Şahin ◽  
Ishak Altun ◽  
Duran Türkoğlu
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Pulak Konar ◽  
Samir Kumar Bhandari ◽  
Sumit Chandok ◽  
Aiman Mukheimer

AbstractIn this paper, we propose some new type of weak cyclic multivalued contraction mappings by generalizing the cyclic contraction using the δ-distance function. Several novel fixed point results are deduced for such class of weak cyclic multivalued mappings in the framework of metric spaces. Also, we construct some examples to validate the usability of the results. Various existing results of the literature are generalized.


2016 ◽  
Vol 59 (01) ◽  
pp. 3-12 ◽  
Author(s):  
Monther Rashed Alfuraidan

Abstract We study the existence of fixed points for contraction multivalued mappings in modular metric spaces endowed with a graph. The notion of a modular metric on an arbitrary set and the corresponding modular spaces, generalizing classical modulars over linear spaces like Orlicz spaces, were recently introduced. This paper can be seen as a generalization of Nadler and Edelstein’s fixed point theorems to modular metric spaces endowed with a graph.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 56 ◽  
Author(s):  
Qasim Mahmood ◽  
Abdullah Shoaib ◽  
Tahair Rasham ◽  
Muhammad Arshad

The purpose of this paper is to find out fixed point results for the family of multivalued mappings fulfilling a generalized rational type F-contractive conditions on a closed ball in complete dislocated b-metric space. An application to the system of integral equations is presented to show the novelty of our results. Our results extend several comparable results in the existing literature.


2020 ◽  
Vol 12 (2) ◽  
pp. 392-400
Author(s):  
Ö. Biçer ◽  
M. Olgun ◽  
T. Alyildiz ◽  
I. Altun

The definition of related mappings was introduced by Fisher in 1981. He proved some theorems about the existence of fixed points of single valued mappings defined on two complete metric spaces and relations between these mappings. In this paper, we present some related fixed point results for multivalued mappings on two complete metric spaces. First we give a classical result which is an extension of the main result of Fisher to the multivalued case. Then considering the recent technique of Wardowski, we provide two related fixed point results for both compact set valued and closed bounded set valued mappings via $F$-contraction type conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chalongchai Klanarong ◽  
Suthep Suantai

We introduce and study new types of mixed monotone multivalued mappings in partially ordered complete metric spaces. We give relationships between those two types of mappings and prove their coupled fixed point and coupled common fixed point theorems in partially ordered complete metric spaces. Some examples of each type of mappings satisfying the conditions of the main theorems are also given. Our main result includes several recent developments in fixed point theory of mixed monotone multivalued mappings.


Sign in / Sign up

Export Citation Format

Share Document