Sencogi Spatio-Temporal Saliency: A New Metric for Predicting Subjective Video Quality on Mobile Devices

Author(s):  
Maria Laura Mele ◽  
Damon Millar ◽  
Christiaan Erik Rijnders
Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 832 ◽  
Author(s):  
Rafael Pérez-Torres ◽  
César Torres-Huitzil ◽  
Hiram Galeana-Zapién

Mobile Edge Computing (MEC) relates to the deployment of decision-making processes at the network edge or mobile devices rather than in a centralized network entity like the cloud. This paradigm shift is acknowledged as one key pillar to enable autonomous operation and self-awareness in mobile devices in IoT. Under this paradigm, we focus on mobility-based services (MBSs), where mobile devices are expected to perform energy-efficient GPS data acquisition while also providing location accuracy. We rely on a fully on-device Cognitive Dynamic Systems (CDS) platform to propose and evaluate a cognitive controller aimed at both tackling the presence of uncertainties and exploiting the mobility information learned by such CDS toward energy-efficient and accurate location tracking via mobility-aware sampling policies. We performed a set of experiments and validated that the proposed control strategy outperformed similar approaches in terms of energy savings and spatio-temporal accuracy in LBS and MBS for smartphone devices.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-26
Author(s):  
Peining Zhen ◽  
Hai-Bao Chen ◽  
Yuan Cheng ◽  
Zhigang Ji ◽  
Bin Liu ◽  
...  

Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.


Sign in / Sign up

Export Citation Format

Share Document