temporal model
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 185)

H-INDEX

39
(FIVE YEARS 6)

2021 ◽  
Vol 12 (4) ◽  
pp. 1-20
Author(s):  
Shixiang Zhu ◽  
Alexander Bukharin ◽  
Liyan Xie ◽  
Mauricio Santillana ◽  
Shihao Yang ◽  
...  

We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together with confirmed cases 1 week ahead of the current time, at the county level and weekly aggregated, in the United States. A notable feature of our spatio-temporal model is that it considers the (1) temporal auto- and pairwise correlation of the two local time series (confirmed cases and deaths from the COVID-19), (2) correlation between locations (propagation between counties), and (3) covariates such as local within-community mobility and social demographic factors. The within-community mobility and demographic factors, such as total population and the proportion of the elderly, are included as important predictors since they are hypothesized to be important in determining the dynamics of COVID-19. To reduce the model’s high dimensionality, we impose sparsity structures as constraints and emphasize the impact of the top 10 metropolitan areas in the nation, which we refer to (and treat within our models) as hubs in spreading the disease. Our retrospective out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity accurately. The proposed multivariate predictive models were designed to be highly interpretable, with clear identification and quantification of the most important factors that determine the dynamics of COVID-19. Ongoing work involves incorporating more covariates, such as education and income, to improve prediction accuracy and model interpretability.


2021 ◽  
Author(s):  
Jose Agustin Garcia ◽  
Francisco Javier Acero ◽  
Javier Portero

Abstract A statistical study was made of the temporal trend in extreme temperatures in the region of Extremadura (Spain) during the period 1981-2015 using a Regional Climate Model. For this purpose, a dataset of extreme temperature was obtained from the Weather Research and Forecating (WRF) Regional Climate Model. This dataset was then subjected to a statistical study using a Bayesian hierarchical spatio-temporal model with a Generalized Extreme Value (GEV) parametrization of the extreme data. The Bayesian model was implemented in a Markov chain Monte Carlo framework that allows the posterior distribution of the parameters that intervene in the model to be estimated. The role of the altitude dependence of the temperature was considered in the proposed model. The results for the spatial-trend parameter lend confidence to the model since they are consistent with the dry adiabatic gradient. Furthermore, the statistical model showed a slight negative trend for the location parameter. This unexpected result may be due to the internal and modeling uncertainties in the WRF model. The shape parameter was negative, meaning that there is an upper bound for extreme temperatures in the model.


Author(s):  
Serhii Chalyi ◽  
Volodymyr Leshchynskyi ◽  
Irina Leshchynska

The subject of the research is the processes of constructing explanations based on causal relationships between states or actions of an intellectualsystem. An explanation is knowledge about the sequence of causes and effects that determine the process and result of an intelligent informationsystem. The aim of the work is to develop a counterfactual temporal model of cause-and-effect relationships as part of an explanation of the process offunctioning of an intelligent system in order to ensure the identification of causal dependencies based on the analysis of the logs of the behavior ofsuch a system. To achieve the stated goals, the following tasks are solved: determination of the temporal properties of the counterfactual description ofcause-and-effect relationships between actions or states of an intelligent information system; development of a temporal model of causal connections,taking into account both the facts of occurrence of events in the intellectual system, and the possibility of occurrence of events that do not affect theformation of the current decision. Conclusions. The structuring of the temporal properties of causal links for pairs of events that occur sequentially intime or have intermediate events is performed. Such relationships are represented by alternative causal relationships using the temporal operators"Next" and "Future", which allows realizing a counterfactual approach to the representation of causality. A counterfactual temporal model of causalrelationships is proposed, which determines deterministic causal relationships for pairs of consecutive events and pairs of events between which thereare other events, which determines the transitivity property of such dependencies and, accordingly, creates conditions for describing the sequence ofcauses and effects as part of the explanation in intelligent system with a given degree of detail The model provides the ability to determine cause-andeffect relationships, between which there are intermediate events that do not affect the final result of the intelligent information system.


2021 ◽  
Vol 194 (1) ◽  
Author(s):  
Amirreza Rostammiri ◽  
Saeed Malmasi ◽  
Fariborz Yosefvand ◽  
Seyed Ahmad Hoseini ◽  
Alireza Etminan

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shaashwat Agrawal ◽  
Aditi Chowdhuri ◽  
Sagnik Sarkar ◽  
Ramani Selvanambi ◽  
Thippa Reddy Gadekallu

Federated learning (FL) is an emerging subdomain of machine learning (ML) in a distributed and heterogeneous setup. It provides efficient training architecture, sufficient data, and privacy-preserving communication for boosting the performance and feasibility of ML algorithms. In this environment, the resultant global model produced by averaging various trained client models is vital. During each round of FL, model parameters are transferred from each client device to the server while the server waits for all models before it can average them. In a realistic scenario, waiting for all clients to communicate their model parameters, where client models are trained on low-power Internet of Things (IoT) devices, can result in a deadlock. In this paper, a novel temporal model averaging algorithm is proposed for asynchronous federated learning (AFL). Our approach uses a dynamic expectation function that computes the number of client models expected in each round and a weighted averaging algorithm for continuous modification of the global model. This ensures that the federated architecture is not stuck in a deadlock all the while increasing the throughput of the server and clients. To implicate the importance of asynchronicity in cybersecurity, the proposed algorithm is tested using NSL-KDD intrusion detection system datasets. The performance accuracy of the global model is about 99.5% on the dataset, outperforming traditional FL models in anomaly detection. In terms of asynchronicity, we get an increased throughput of almost 10.17% for every 30 timesteps.


Sign in / Sign up

Export Citation Format

Share Document