Optimal Paths in Directed Graphs

Author(s):  
Hassan AbouEisha ◽  
Talha Amin ◽  
Igor Chikalov ◽  
Shahid Hussain ◽  
Mikhail Moshkov
2010 ◽  
Vol 20 (04) ◽  
pp. 449-469 ◽  
Author(s):  
DANNY Z. CHEN ◽  
EWA MISIOŁEK

Many algorithms for applications such as pattern recognition, computer vision, and computer graphics seek to compute actual optimal paths in weighted directed graphs. The standard approach for reporting an actual optimal path is based on building a single-source optimal path tree. A technique by Chen et al.2 was given for a class of problems such that a single actual optimal path can be reported without maintaining any single-source optimal path tree, thus significantly reducing the space bound of those problems with no or little increase in their running time. In this paper, we extend the technique by Chen et al.2 to the generalized problem of reporting many actual optimal paths with different starting and ending vertices in certain directed graphs, and show how this new technique yields improved results on several application problems, such as reconstructing a 3-D surface band bounded by two simple closed curves, finding various constrained segmentation of 2-D medical images, and circular string-to-string correction. We also correct an error in the time/space complexity for the well-cited circular string-to-string correction algorithm12 and give an improved result for this problem. Although the generalized many-path problem seems more difficult than the single-path cases, our algorithms have nearly the same space and time bounds as those of the single-path cases. Our technique is likely to help improve many other optimal paths or dynamic programming algorithms.


1984 ◽  
Author(s):  
Lawrence A. Rowe ◽  
Michael Davis ◽  
Eli Messinger ◽  
Carl Meyer ◽  
Charles Spirakis
Keyword(s):  

Author(s):  
Jason J. R. Liu ◽  
Ka-Wai Kwok ◽  
Yukang Cui ◽  
Jun Shen ◽  
James Lam

2021 ◽  
Vol 13 (8) ◽  
pp. 1525
Author(s):  
Gang Tang ◽  
Congqiang Tang ◽  
Hao Zhou ◽  
Christophe Claramunt ◽  
Shaoyang Men

Most Coverage Path Planning (CPP) strategies based on the minimum width of a concave polygonal area are very likely to generate non-optimal paths with many turns. This paper introduces a CPP method based on a Region Optimal Decomposition (ROD) that overcomes this limitation when applied to the path planning of an Unmanned Aerial Vehicle (UAV) in a port environment. The principle of the approach is to first apply a ROD to a Google Earth image of a port and combining the resulting sub-regions by an improved Depth-First-Search (DFS) algorithm. Finally, a genetic algorithm determines the traversal order of all sub-regions. The simulation experiments show that the combination of ROD and improved DFS algorithm can reduce the number of turns by 4.34%, increase the coverage rate by more than 10%, and shorten the non-working distance by about 29.91%. Overall, the whole approach provides a sound solution for the CPP and operations of UAVs in port environments.


Sign in / Sign up

Export Citation Format

Share Document