surface band
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 46)

H-INDEX

38
(FIVE YEARS 3)

Author(s):  
Sujay Shekar G. C. ◽  
Khaled Alkanad ◽  
Gubran Alnaggar ◽  
Nabil A Zaqri ◽  
Mohammed Abdullah Bajiri ◽  
...  

Surface defects on semiconductor photocatalyst display incredible light absorption bandwidth and function as highly active sites for oxidation processes by interacting with surface band structure. Accordingly, engineering the photocatalyst with...


Author(s):  
Jiarui Gong ◽  
Kuangye Lu ◽  
Jisoo Kim ◽  
Tien Khee Ng ◽  
Donghyeok Kim ◽  
...  

Abstract The recently demonstrated approach of grafting n-type GaN with p-type Si or GaAs, by employing ultrathin Al2O3 at the interface, has shown the feasibility to overcome the poor p-type doping challenge of GaN. However, the surface band-bending of GaN that could be influenced by the Al2O3 has been unknown. In this work, the band-bending of c-plane, Ga-face GaN with ultrathin Al2O3 deposition at the surface of GaN was studied using X-ray photoelectron spectroscopy (XPS). The study shows that the Al2O3 can help suppress the upward band-bending of the c-plane, Ga-face GaN with a monotonic reduction trend from 0.48 eV down to 0.12 eV as the number of Al2O3 deposition cycles increases from 0 to 20. The study further shows that the band-bending can be mostly recovered after removing the Al2O3 layer, concurring that the introduction of ultrathin Al2O3 is the main reason for the surface band-bending modulation.


2D Materials ◽  
2021 ◽  
Author(s):  
Joanna Sitnicka ◽  
Kyungwha Park ◽  
Paweł Skupiński ◽  
Krzysztof Grasza ◽  
Anna Reszka ◽  
...  

Abstract MnBi2Te4/(Bi2Te3)n materials system has recently generated strong interest as a natural platform for realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic MnBi2Te4/(Bi2Te3)n it is found that migration of Mn between MnBi2Te4 septuple layers (SLs) and otherwise non-magnetic Bi2Te3 quintuple layers (QLs) has systemic consequences - it induces ferromagnetic coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation (n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi2Te4/(Bi2Te3)n. These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2245
Author(s):  
Udai Prakash Tyagi ◽  
Kakoli Bera ◽  
Partha Goswami

We study a strong f-electron localization effect on the surface state of a generic topological Kondo insulator (TKI) system by performing a mean-field theoretic (MFT) calculation within the framework of the periodic Anderson model (PAM) using the slave boson technique. The surface metallicity, together with bulk insulation, requires this type of localization. A key distinction between surface states in a conventional insulator and a topological insulator is that, along a course joining two time-reversal invariant momenta (TRIM) in the same BZ, there will be an intersection of these surface states, an even/odd number of times, with the Fermi energy inside the spectral gap. For an even (odd) number of surface state crossings, the surface states are topologically trivial (non-trivial). The symmetry consideration and the pictorial representation of the surface band structure obtained here show an odd number of crossings, leading to the conclusion that, at least within the PAM framework, the generic system is a strong topological insulator.


ACS Nano ◽  
2021 ◽  
Vol 15 (9) ◽  
pp. 14786-14793
Author(s):  
Jun Fujii ◽  
Barun Ghosh ◽  
Ivana Vobornik ◽  
Anan Bari Sarkar ◽  
Debashis Mondal ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5353
Author(s):  
Jen-Chuan Tung ◽  
Yu-Hsuan Hsieh ◽  
Po-Liang Liu

First-principles density functional theory was used to determine the surface band structures of CsPbBrxI3−x (x = 0, 1, 2, and 3) perovskites. The equilibrium lattice constants of CsPbBrxI3−x were obtained from the minimum of the total energy as a function of the iodine concentration. We discovered that the band gaps of CsPbBrxI3−x decreased monotonically under pressure. The phase change from a normal insulator to a topological insulator was found at approximately 2–4 GPa. The Pbp- and Brs-orbitals inverted at the R symmetric point with and without spin–orbit coupling. Nontrivial Z2 topological numbers were obtained, and the surface conduction bands were demonstrated theoretically using a 1 × 1 × 10 supercell. We ascertained that CsPbBr2I has the largest electric polarization 0.025 C/m2 under a compression strain of 10%. We also observed that in the normal insulation phase, the band gap increases with a small displacement of the central Pb atom in the z-direction, but in the topological insulator phase, the band gap decreases with the movement of the Pb atom in the z-direction. Additionally, in the supercell structure, CsPbBrxI3−x is a ferroelectric topological insulator because the Pb atom leaves its own equilibrium position.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Alexandra R. McNeill ◽  
Rodrigo Martinez-Gazoni ◽  
Roger J. Reeves ◽  
Martin W. Allen ◽  
Alison Downard

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1077
Author(s):  
Rubén Gracia-Abad ◽  
Soraya Sangiao ◽  
Chiara Bigi ◽  
Sandeep Kumar Chaluvadi ◽  
Pasquale Orgiani ◽  
...  

Topological insulators are materials with time-reversal symmetric states of matter in which an insulating bulk is surrounded by protected Dirac-like edge or surface states. Among topological insulators, Bi2Se3 has attracted special attention due to its simple surface band structure and its relatively large band gap that should enhance the contribution of its surface to transport, which is usually masked by the appearance of defects. In order to avoid this difficulty, several features characteristic of topological insulators in the quantum regime, such as the weak-antilocalization effect, can be explored through magnetotransport experiments carried out on thin films of this material. Here, we review the existing literature on the magnetotransport properties of Bi2Se3 thin films, paying thorough attention to the weak-antilocalization effect, which is omnipresent no matter the film quality. We carefully follow the different situations found in reported experiments, from the most ideal situations, with a strong surface contribution, towards more realistic cases where the bulk contribution dominates. We have compared the transport data found in literature to shed light on the intrinsic properties of Bi2Se3, finding a clear relationship between the mobility and the phase coherence length of the films that could trigger further experiments on transport in topological systems.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 455
Author(s):  
R. I. Eglitis ◽  
Juris Purans ◽  
Ran Jia

We performed, to the best of our knowledge, the world’s first first-principles calculations for the WO2-terminated cubic WO3 (001) surface and analyzed the systematic trends in the WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surface ab initio calculations. According to our first principles calculations, all WO2 or TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3 and CaZrO3 (001) surface upper-layer atoms relax inwards towards the crystal bulk, while all second-layer atoms relax upwards. The only two exceptions are outward relaxations of first layer WO2 and TiO2-terminated WO3 and PbTiO3 (001) surface O atoms. The WO2 or TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surface-band gaps at the Γ–Γ point are smaller than their respective bulk-band gaps. The Ti–O chemical bond populations in the SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk are smaller than those near the TiO2-terminated (001) surfaces. Conversely, the W–O chemical bond population in the WO3 bulk is larger than near the WO2-terminated WO3 (001) surface.


Sign in / Sign up

Export Citation Format

Share Document