Forensic Archaeological Remote Sensing and Geospatial Analysis

Author(s):  
Alastair Vannan
2021 ◽  
Author(s):  
Thomas Smith ◽  
Jessica McCarty ◽  
Merritt Turetsky ◽  
Mark Parrington

<p>MODIS has provided an 18-year continuous record of global fire activity. Here we present a geospatial analysis of MODIS hotspots in the high latitudes of the northern hemisphere from 2003 through to 2020. By combining the hotspot data with multiple land-cover datasets relating to vegetation cover, permafrost, and peat, we investigate boreal and tundra wildfire regimes, including an assessment of a significant northwards shift and increase in fire activity in 2019 and 2020. We focus on the distribution of hotspots on high latitude peatlands and permafrost and the associated difficulties in confirming residual smouldering compustion of peat soils using current remote sensing technology.</p>


Author(s):  
Çağlar Bayık ◽  
Hüseyin Topan ◽  
Mustafa Özendi ◽  
Murat Oruç ◽  
Ali Cam ◽  
...  

Inclined topographies are one of the most challenging problems for geospatial analysis of air-borne and space-borne imageries. However, flat areas are mostly misleading to exhibit the real performance. For this reason, researchers generally require a study area which includes mountainous topography and various land cover and land use types. Zonguldak and its vicinity is a very suitable test site for performance investigation of remote sensing systems due to the fact that it contains different land use types such as dense forest, river, sea, urban area; different structures such as open pit mining operations, thermal power plant; and its mountainous structure. In this paper, we reviewed more than 120 proceeding papers and journal articles about geospatial analysis that are performed on the test field of Zonguldak and its surroundings. Geospatial analysis performed with imageries include elimination of systematic geometric errors, 2/3D georeferencing accuracy assessment, DEM and DSM generation and validation, ortho-image production, evaluation of information content, image classification, automatic feature extraction and object recognition, pan-sharpening, land use and land cover change analysis and deformation monitoring. In these applications many optical satellite images are used i.e. ASTER, Bilsat-1, IKONOS, IRS-1C, KOMPSAT-1, KVR-1000, Landsat-3-5-7, Orbview-3, QuickBird, Pleiades, SPOT-5, TK-350, RADARSAT-1, WorldView-1-2; as well as radar data i.e. JERS-1, Envisat ASAR, TerraSAR-X, ALOS PALSAR and SRTM. These studies are performed by Departments of Geomatics Engineering at Bülent Ecevit University, at İstanbul Technical University, at Yıldız Technical University, and Institute of Photogrammetry and GeoInformation at Leibniz University Hannover. These studies are financially supported by TÜBİTAK (Turkey), the Universities, ESA, Airbus DS, ERSDAC (Japan) and Jülich Research Centre (Germany).


2020 ◽  
Vol 245 ◽  
pp. 111795
Author(s):  
Eleni Fitoka ◽  
Maria Tompoulidou ◽  
Lena Hatziiordanou ◽  
Antonis Apostolakis ◽  
Rene Höfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document