Extended Finite Elements Method for Fluid-Structure Interaction with an Immersed Thick Non-linear Structure

Author(s):  
Christian Vergara ◽  
Stefano Zonca
2017 ◽  
Vol 69 ◽  
pp. 209-231 ◽  
Author(s):  
Matthieu Sacher ◽  
Frédéric Hauville ◽  
Régis Duvigneau ◽  
Olivier Le Maître ◽  
Nicolas Aubin ◽  
...  

Author(s):  
Long He ◽  
Keyur Joshi ◽  
Danesh Tafti

In this work, we present an approach for solving fluid structure interaction problems by combining a non-linear structure solver with an incompressible fluid solver using immersed boundary method. The implementation of the sharp-interface immersed boundary method with the fluid solver is described. A structure solver with the ability to handle geometric nonlinearly is developed and tested with benchmark cases. The partitioned fluid-structure coupling algorithm with the strategy of enforcing boundary conditions at the fluid/structure interaction is given in detail. The fully coupled FSI approach is tested with the Turek and Hron fluid-structure interaction benchmark case. Both strong coupling and weak coupling algorithms are examined. Predictions from the current approach show good agreement with the results reported by other researchers.


Author(s):  
Tolotra Emerry Rajaomazava ◽  
Mustapha Benaouicha ◽  
Jacques-André Astolfi

In this paper, the flow over pitching and heaving hydrofoil is investigated. The viscous incompressible Navier-Stokes problem in Arbitrary Lagrangian-Eulerian (ALE) formulation is solved using the finite elements code Cast3M. The projection method is used to uncouple the velocity and pressure fields. The implicit Euler scheme is applied for time discretization of fluid equations. The dynamics of the hydrofoil is governed by a non-linear ordinary differential equation. The non-linear coupled problem is solved using the explicit staggered algorithm. The effects of fluid-structure interaction on hydrofoil dynamics and pressure center position are analyzed.


Sign in / Sign up

Export Citation Format

Share Document