Numerical Modeling of Consolidation of Marine Clay under Vacuum Preloading Incorporating Prefabricated Vertical Drains

Author(s):  
Sao Man Ho ◽  
Thomas Man Hoi Lok
2021 ◽  
Vol 9 (8) ◽  
pp. 797
Author(s):  
Shu Lin ◽  
Dengfeng Fu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
Shuwang Yan

Vacuum preloading combined with prefabricated vertical drains (PVDs) has the potential to improve the soft sediments under water, however, its development is partly limited by the unclear understanding of the mechanism. This paper aims to extend the comprehension of the influential mechanism of overlapping water in the scenario of underwater vacuum preloading with PVDs. The systematic investigations were conducted by small strain finite element drained analyses, with the separated analysis schemes considering suction-induced consolidation, seepage and their combination. The development of settlement in the improved soil region and the evolution of seepage flow from the overlapping water through the non-improved soil region into improved zone are examined in terms of the build-up of excess pore pressure. Based on the results of numerical analyses, a theoretical approach was set out. It was capable to estimate the time-dependent non-uniform settlement along the improved soil surface in response to the combined effects of suction-induced consolidation and seepage. The difference of underwater and onshore vacuum preloading with PVDs is discussed with some practical implication and suggestion provided.


2010 ◽  
Vol 28 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Saowapakpiboon ◽  
D.T. Bergado ◽  
S. Youwai ◽  
J.C. Chai ◽  
P. Wanthong ◽  
...  

1998 ◽  
Vol 35 (5) ◽  
pp. 740-749 ◽  
Author(s):  
J Q Shang ◽  
M Tang ◽  
Z Miao

This case study presents the design, operation, and results of a soil improvement project using the vacuum preloading method on 480 000 m2 of reclaimed land in Xingang Port, Tianjing, China. The areas treated with vacuum ranged from 5000 to 30 000 m2. The effects of soil improvement are demonstrated through the average consolidation settlement of 2.0 m and increases in undrained shear strengths by a factor of two to four or more. The study shows that the vacuum method is an effective tool for the consolidation of very soft, highly compressive clayey soils over a large area. The technique is especially feasible in cases where there is a lack of surcharge loading fills, extremely low shear strength, soft ground adjacent to critical slopes, and access to a power supply.Key words: vacuum preloading consolidation, soil improvement, soft clays, land reclamation, prefabricated vertical drains.


2018 ◽  
Vol 55 (10) ◽  
pp. 1359-1371 ◽  
Author(s):  
Yuanqiang Cai ◽  
Zhiwei Xie ◽  
Jun Wang ◽  
Peng Wang ◽  
Xueyu Geng

This paper presented a new approach for ground improvement of deep marine clay in which the conventional booster tube in the current air booster vacuum preloading technology was replaced by a booster prefabricated vertical drain (PVD). In comparison to the ordinary PVD, the booster PVD could provide inflow channels for the compressed air when the booster pump was in operation. To examine the performance of this new air booster vacuum preloading technology, in situ field tests were conducted at Oufei sluice project in Wenzhou, China, where the thickness of the soft soil layers (i.e., marine clay) was more than 20 m. An extensive monitoring system was implemented to measure the vacuum pressure, pore-water pressure, settlement, and lateral displacement at this reclamation site. With the collected field monitoring data, a comprehensive data analysis was carried out to evaluate the extent of ground improvement. The study results depicted that this new air booster vacuum preloading technology was more effective for the ground improvement of the deep marine clay layers, in comparison to the conventional vacuum preloading technology.


Sign in / Sign up

Export Citation Format

Share Document