prefabricated vertical drain
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 51)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Daqing Wang ◽  
Dong Wei ◽  
Guoyi Lin ◽  
Jiannan Zheng ◽  
Zhiting Tang ◽  
...  

Combined vacuum and surcharge preloading has gradually been widely used because of its advantages of low cost, green environmental protection, and good treatment effect. The conventional prefabricated vertical drain presents obvious defects in vacuum preloading treatment, such as obvious silting, serious bending of the drainage board, large attenuation of vacuum degree of drainage board along the depth, long construction period, and so on, which affect the final reinforcement effect. In this paper, the MIDAS finite element simulation of combined vacuum and surcharge preloading of prefabricated vertical drains (PVDs) and prefabricated horizontal drains (PHDs) is established through the comparative experiment of the engineering field. The comparative experimental study is carried out from the aspects of the vertical settlement, horizontal displacement, and pore water pressure. The results show that under combined vacuum and surcharge preloading, the consolidation effect of soft soil with PHDs is better than that with PVDs. When PHDs are used, the vertical settlement increases by 7.2% compared with PVDs; the horizontal displacement is larger; and the pore water pressure dissipates faster. This is because when the PHDs are adopted, the consolidation direction of the soil is consistent with the direction of the vacuum suction, which is mainly caused by vertical settlement. With the consolidation, the spacing between PHDs is gradually shortened, and the drainage distance is reduced, which can effectively reduce the consolidation time and improve the reinforcement effect of the soil. In addition, the PHDs can move downward uniformly with the soil during the consolidation process and have almost no bending deformation, which makes the vacuum transfer more uniform and effective.


2021 ◽  
Vol 15 (1) ◽  
pp. 310-319
Author(s):  
Nadarasa Kuganeswaran ◽  
Afikah Rahim ◽  
Nazri Ali

Background: Constructing on soft ground is one of the challenges of geotechnical engineering. The unpredictable behaviour and characteristics of soft soil can cause much damage resulting in high maintenance costs in the post-construction phase. Objective: The purpose of this study is to analyse the consolidation process and ground improvement method using surcharge and a prefabricated vertical drain by measuring the accuracy of the prediction settlement value with the actual site settlement results. Methods: An effective ground improvement method is the application of a surcharge and prefabricated vertical drains (PVDs). Various methods can be used to predict the settlement effectively, one such method being PLAXIS 3D simulation. A case study on ground improvement works was selected for this research, where PVDs were constructed and implemented at the site. A few undisturbed samples were collected from the site to generate the parameters based on the lab test conducted in the simulation process. This parameter was carefully studied and representing the principal input for the 3D model, which is generated and represents the actual ground improvement method for the selected case study. The analysis was performed using a borehole and soft soil model to generate the diagram. The prediction settlement value was generated from the PLAXIS 3D analysis as the baseline comparing to the actual results. The factors that influence the settlement value, such as the length and spacing of the prefabricated vertical drain, construction method, and soil characteristics, are also discussed. Results: A predicted settlement of 2553 mm was generated by the simulation, while the actual settlement outcome at the site was 2096 mm, a difference of 457 mm, and a prediction accuracy of 82.1%. Conclusion: The study found that the combination of surcharge and prefabricated vertical drain in the ground improvement worked well. Also, discussed were the factors that influenced the accuracy of the prediction and the site results.


2021 ◽  
pp. 1-42
Author(s):  
Y. Zhou ◽  
H. Yang ◽  
P. Wang ◽  
X. T. Yang ◽  
F. Xu

The horizontal strain in the vacuum preloading/dewatering of dredged slurry is significant to the apparent clogging effect and estimation of surface settlement around a drain; however, it has seldom been investigated in previous studies. In this study, a vacuum consolidation model test assisted with the particle image velocimetry (PIV) technology was conducted. The displacement vector field was obtained through PIV analysis and image processing; it was used to visually observe the deformation features around a drain. Based on the displacement field, the vertical/horizontal strains at varied radial distances were calculated to explain the “soil pile” and apparent clogging effect. From the strain distribution with radial distances, a significant lateral compression zone near the drain and an extension zone at farther areas were confirmed. Furthermore, a simple explicit model was established to evaluate the horizontal strain within a prefabricated vertical drain unit cell considering a horizontal attenuated vacuum and compression/extension zone. Finally, this method was applied to predict the horizontal displacement in the model test. The results showed that the proposed method can estimate the lateral displacement of soft clay slurry fairly well.


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 41
Author(s):  
Ade Nafis Prawira

Muara Tabirai Bridge is on the border between Rantau and Kandangan District ,which is precisely is on the street of Kalumpang-Margasari, the village of Paci, Kalumpang subdistrict. Increasing economic growth has led to the economy of the population being affected by the development of the city, gradually increasing in economic sectors as a result of global economic growth. The increase in this economy is due to the growing industry in the area. This is accompanied by the increase and needs of the population in the area that resides in the region. Unfortunately, after one year of construction of Muara Tabirai Bridge, the approach slabs bridge in the direction Kandangan on the right side suffered a decrease in the soil to damage the asphalt, due to the possibility of a landslide on the side of the road, then the implementers make alternative repairs by using a bronjong which makes the load heavier than before so that the ground that supports the burden of the heap, bronjong and traffic load can not withstand and So in this final task is done repair on the ground soil and design a retaining wall that is more suitable for the condition of the landThe basic soil repair method used is by a phased heap (Preloading) combined with the Prefabricated Vertical Drain (PVD) ,which serves as a water and air release on the soil, thus experiencing a consolidated degree of 90%. And for retaining wall against the side of the heap is used sheet pile with the type of free-standing ,which is suitable for the location of the pile located in the river. After that, the calculation of budget plan (RAB) on the Land, improvement Project,From the result of calculation obtained, a gradual heap (Preloading) carried out 0.2 m/week ,and ,a high critical heap (HCR) obtained on the high end of the plan (HR) 3.14 m obtained a security figure (SF) of 1.148 so that the heap used the soil reinforcement that is Mini pile erection so that the safety number (SF) reaches more than equal to 1.5 Prefabricated Vertical Drain (PVD) is used specification of the product PT. Teknindo Superior System installed when before done the filling is on the ground ground, planning Prefabricated Vertical Drain (PVD) using a triangular mounting pattern with a distance between PVD 1.25 m, depth 28 m and the time required is 21 weeks. Planning of soil retaining structure used is cantilever sheet pile type, obtained a total length of sheet pile of 20.938 m at STA 0 + 275 on the left and right side of the bridge. The budget plan for this basic land improvement project is Rp. 30,886,527,167


CERUCUK ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Agung Wahyu Eka Prasetya ◽  
Hutagamissufardal Hutagamissufardal

Planning the Kuala Tanjung Ruas Port of Inderapura - Kuala Tanjung Toll Road is one of the efforts to support economic growth in North Sumatra. The toll road will be built on a pile with a height of 2 ms / 9 m at STA 0 + 000 to STA 3 + 500. Due to limited land, the toll road section must be built on the poor subgrade. Based on the N-SPT test results, it is known that the subsoil consists of a clay layer with a thickness reaching 36 meters and a layer of sand at the top and bottom with a low N-SPT value. If the soft subgrade is burdened with a high heap, it is estimated that the subgrade will experience landslides, so it is necessary to plan the improvement of the subgrade and reinforcement of the pile.The soil improvement method chosen is the pre-loading method with a combination of the prefabricated vertical drain (PVD). Pre-loading method aims to spend the compression that occurs on the subgrade so that there is no compression during the service life of the road. The combination with PVD is intended to speed up the compression time in thick clay layers. The stability of the embankment will be calculated using a computer-assisted program, and geotextile reinforcement planning will be carried out if the value of the safety factor does not meet the requirements.Based on the analysis of compression computation will be divided into five zones. The amount of compression obtained under various piles of 2 ms / d 9 m was 2.25 m, 1.49 m, 1.75 m, 2.57 m, 3.65 m, 4.3 m, 4.69 m, and 5.06 m with an initial heap height of 5.02 m, 5.26 m, 6.51 m, 8.34 m, 10.41 m, 12.07 m, 13.46 m, and 14.83 m. Compression time required for subgrade is relatively long with a period of more than five years so that the planned acceleration with PVD. To accelerate the compression time to 5-6 weeks, a triangular PVD installation pattern is used with a spacing between PVD of 1.5 m and a depth of PVD installation as thick as a soft soil layer. From the results of the pile stability control, it is predicted that the pile will experience slides so that the reinforcement is installed with geotextile.Rp1.598,213,522,582.08.


2021 ◽  
Vol 11 (20) ◽  
pp. 9715
Author(s):  
Jiahao Wang ◽  
Zunan Fu ◽  
Yanming Yu ◽  
Guoshuai Wang ◽  
Li Shi ◽  
...  

The vacuum preloading method is commonly adopted for improving the soft ground that the embankment of the railway line is laid on. The PIV (Particle Image Velocimetry) technique is a powerful tool in observing the formation of the soil column, a phenomenon that is unique to the dredged slurry when treated by vacuum preloading. However, it is not clear to what extent the motions of the slurry particles can be represented by the PIV tracers. In this paper, a mesoscopic model has been established by using the CFD-DEM method to reproduce the vacuum consolidation process of the slurry, in which the PVD (Prefabricated Vertical Drain) membrane, the slurry particles, and the tracers are described by the DEM, and the pore water is governed by the CFD method. Eight computational cases that can cover a broad range of material parameters governing the PIV model tests on the dredged slurry have been designed and studied by the established model. The representativeness of the PIV tracer is evaluated by comparing the statistic displacement of the tracer to that of the slurry particles. It is found that for the commonly used tracer, the carbon powder, can reliably represent the particle motions of the slurry since the difference in displacements of the tracer and the slurry particles is smaller than 6.5% if the diameter ratio between the tracer and the slurry particle is within 1.8.


2021 ◽  
Vol 11 (19) ◽  
pp. 9285
Author(s):  
Qiang Meng ◽  
Qianwei Xu ◽  
Xianmin Luo ◽  
Yang Chen ◽  
Tianyi Li

This paper presents the analytical solution of the radial consolidation of a prefabricated vertical drain (PVD) foundation under the unsaturated condition. In the proposed modeling, air and water phases in the foundation are thought to dissipate horizontally toward to the drain, and the smear effect, drain resistance and external time-dependent loading are fully considered. The analytical mathematical tools, namely the general integration method, Fourier series expansion method, decoupling method and the constant variation method, are utilized to solve the partial differential equations. Moreover, the current solutions are verified with existing solutions in the literature. Finally, a case study considering the ramp loading and exponential loading is conducted to investigate the consolidation patterns under various loading parameters. The results show that smear effect and drain resistance can significantly hinder the dissipation process of excess pore pressures, and different external loading types will lead to various dissipation characteristics (i.e., peak values).


2021 ◽  
Vol 4 (3) ◽  
pp. 641
Author(s):  
Steven Djunawan ◽  
Andryan Suhendra

Soft soil in Indonesia is problematic in infrastructure development because of its low bearing capacity and takes a long time to consolidate. In general, the method used to overcome soft soil is vacuum preloading combined with prefabricated vertical drain, PVD. The purpose of the initial loading is to consolidate the soft soil layer with a load equal to or greater than the soil load during and after construction. Meanwhile, vertical can support the consolidation process. However, this method can also cause lateral movement which also affects the area outside the repair. Thus, it is necessary to model the influence distance analysis from the circumference of the repair area outside the repair. Analysis and modeling using 2D finite program elements that will be compared with results in field. The results of the comparison of the settlement for 260 days shows a different chart pattern but a corresponding final settlement. The modeling shows that the largest influence distance due to the lateral movement is cell 2, which is 11,23mTanah lunak di Indonesia menjadi problematika pada pembangunan infrastruktur dikarenakan daya dukung yang rendah serta memakan waktu penurunan konsolidasi yang lama. Pada umumnya, perbaikan tanah yang digunakan untuk mengatasi tanah lunak adalah vacuum preloading yang dikombinasikan dengan prefabricated vertical drain, PVD. Tujuan pembebanan awal adalah untuk mengkonsolidasikan lapisan tanah lunak dengan beban sama atau lebih besar dari beban tanah selama dan setelah konstruksi. Sementara drainase vertikal dapat mempercepat proses konsolidasi. Namun, metode ini juga dapat penyebabkan pergerakan lateral yang juga mempengaruhi area diluar perbaikan. Sehingga, dibutuhkan pemodelan analisis jarak pengaruh dari keliling daerah perbaikan ke daerah luar perbaikan. Analisis dan pemodelan menggunakan program elemen hingga 2D yang akan dibandingkan dengan hasil lapangan. Hasil perbandingan penurunan selama 260 hari menunjukan pola grafik yang berbeda namun penurunan akhir yang sesuai. Pemodelan menunjukan jarak pengaruh terbesar akibat pergerakan lateral berada pada cell 2 yaitu 11,23m.


Sign in / Sign up

Export Citation Format

Share Document