Numerical study of Non-Oberbeck-Boussinesq effects on the heat transport in turbulent Rayleigh-Bénard convection in liquids

Author(s):  
Kazuyasu Sugiyama ◽  
Enrico Calzavarini ◽  
Detlef Lohse
2012 ◽  
Vol 472-475 ◽  
pp. 1283-1288 ◽  
Author(s):  
Chen Hui Zheng ◽  
Chang Feng Li ◽  
Hua Hong Jiang

In this study, the Reynolds-Averaged-Navier-Stokes (RANS) model combined with the Cross Viscosity Equation is used, applied to the soft turbulence regime (Ra =5×105~4×107) and hard turbulence regime (Ra>4×107) of Rayleigh-Bénard convection (RBC). The relation curves between heat transport (Nusselt number) and other parameters, as well as flow pattern changes of RBC are obtained for the cases with different Rayleigh number and concentration of the polymer additive. The simulations show that the presence of polymer additive can lead to an enhancement of the heat transfer with larger effect in the hard turbulence regime than those in the soft turbulence regime. It is also shown that in the soft turbulence regime the reversal cycles are shorter than in hard turbulence regime. The symmetric vortices in the diagonal corner of enclosed space shrink and the velocities of large-scale circulation (LSC) increase accordingly.


2017 ◽  
Vol 835 ◽  
pp. 491-511 ◽  
Author(s):  
Dennis Bakhuis ◽  
Rodolfo Ostilla-Mónico ◽  
Erwin P. van der Poel ◽  
Roberto Verzicco ◽  
Detlef Lohse

A series of direct numerical simulations of Rayleigh–Bénard convection, the flow in a fluid layer heated from below and cooled from above, were conducted to investigate the effect of mixed insulating and conducting boundary conditions on convective flows. Rayleigh numbers between $Ra=10^{7}$ and $Ra=10^{9}$ were considered, for Prandtl numbers $\mathit{Pr}=1$ and $\mathit{Pr}=10$. The bottom plate was divided into patterns of conducting and insulating stripes. The size ratio between these stripes was fixed to unity and the total number of stripes was varied. Global quantities, such as the heat transport and average bulk temperature, and local quantities, such as the temperature just below the insulating boundary wall, were investigated. For the case with the top boundary divided into two halves, one conducting and one insulating, the heat transfer was found to be approximately two-thirds of that for the fully conducting case. Increasing the pattern frequency increased the heat transfer, which asymptotically approached the fully conducting case, even if only half of the surface is conducting. Fourier analysis of the temperature field revealed that the imprinted pattern of the plates is diffused in the thermal boundary layers, and cannot be detected in the bulk. With conducting–insulating patterns on both plates, the trends previously described were similar; however, the half-and-half division led to a heat transfer of about a half of that for the fully conducting case instead of two-thirds. The effect of the ratio of conducting and insulating areas was also analysed, and it was found that, even for systems with a top plate with only 25 % conducting surface, heat transport of 60 % of the fully conducting case can be seen. Changing the one-dimensional stripe pattern to a two-dimensional chequerboard tessellation does not result in a significantly different response of the system.


2016 ◽  
Vol 794 ◽  
pp. 639-654 ◽  
Author(s):  
Shi-Di Huang ◽  
Ke-Qing Xia

We report an experimental study of confinement effects in quasi-2-D turbulent Rayleigh–Bénard convection. The experiments were conducted in five rectangular cells with their height $H$ and length $L$ being the same and fixed, while the width $W$ was different for each cell to produce lateral aspect ratios (${\it\Gamma}=W/H$) of 0.6, 0.3, 0.2, 0.15 and 0.1. Direct flow field measurements reveal that the large-scale flow slows down as ${\it\Gamma}$ decreases and there are more plumes travelling through the bulk region. Moreover, the reversal frequency of the large-scale flow is found to increase drastically in smaller ${\it\Gamma}$ cells, by more than 1000-fold for the highest value of Rayleigh number reached in the experiment. The reversal frequency can be well described by a stochastic model developed by Ni et al. (J. Fluid Mech., vol. 778, 2015, R5) and the probability density functions (PDF) of the time interval between successive reversals are found to follow Poisson statistics as in the 3-D system. It is further observed that the bulk temperature fluctuation increases significantly and its PDF changes from exponential to Gaussian as ${\it\Gamma}$ decreases. The influences of geometric confinement on the global heat transport are also investigated. The measured Nu–Ra relationship suggests that, as the lateral aspect ratio decreases, the relative weight of the boundary layer contribution in the global heat transport increases compared to that from the bulk. These results demonstrate that in the quasi-2-D geometry, geometric confinement has strong effects on both the global and local properties in turbulent convective flows, which are very different from the previous findings in 3-D and true 2-D systems.


Sign in / Sign up

Export Citation Format

Share Document