turbulence regime
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 3)

2022 ◽  
Author(s):  
F. Nespoli ◽  
S. Masuzaki ◽  
K. Tanaka ◽  
N. Ashikawa ◽  
M. Shoji ◽  
...  

AbstractIn state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.


2021 ◽  
Vol 118 (44) ◽  
pp. e2105015118
Author(s):  
Vincent Bouillaut ◽  
Benjamin Miquel ◽  
Keith Julien ◽  
Sébastien Aumaître ◽  
Basile Gallet

The competition between turbulent convection and global rotation in planetary and stellar interiors governs the transport of heat and tracers, as well as magnetic field generation. These objects operate in dynamical regimes ranging from weakly rotating convection to the “geostrophic turbulence” regime of rapidly rotating convection. However, the latter regime has remained elusive in the laboratory, despite a worldwide effort to design ever-taller rotating convection cells over the last decade. Building on a recent experimental approach where convection is driven radiatively, we report heat transport measurements in quantitative agreement with this scaling regime, the experimental scaling law being validated against direct numerical simulations (DNS) of the idealized setup. The scaling exponent from both experiments and DNS agrees well with the geostrophic turbulence prediction. The prefactor of the scaling law is greater than the one diagnosed in previous idealized numerical studies, pointing to an unexpected sensitivity of the heat transport efficiency to the precise distribution of heat sources and sinks, which greatly varies from planets to stars.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 938
Author(s):  
Stefano Scardigli ◽  
Francesco Berrilli ◽  
Dario Del Moro ◽  
Luca Giovannelli

The multiscale dynamics associated with turbulent convection present in physical systems governed by very high Rayleigh numbers still remains a vividly disputed topic in the community of astrophysicists, and in general, among physicists dealing with heat transport by convection. The Sun is a very close star for which detailed observations and estimations of physical properties on the surface, connected to the processes of the underlying convection zone, are possible. This makes the Sun a unique natural laboratory in which to investigate turbulent convection in the hard turbulence regime, a regime typical of systems characterized by high values of the Rayleigh number. In particular, it is possible to study the geometry of convection using the photospheric magnetic voids (or simply voids), the quasi-polygonal quiet regions nearly devoid of magnetic elements, which cover the whole solar surface and which form the solar magnetic network. This work presents the most extensive statistics, both in the spatial scales studied (1–80 Mm) and in the temporal duration (SC 23 and SC 24), to investigate the multiscale nature of solar magnetic patterns associated with the turbulent convection of our star. We show that the size distribution of the voids, in the 1–80 Mm range, for the 317,870 voids found in the 692 analyzed magnetograms, is basically described by an exponential function.


2021 ◽  
Author(s):  
Federico Nespoli ◽  
Suguru Masuzaki ◽  
Kenji Tanaka ◽  
Naoko Ashikawa ◽  
Mamoru Shoji ◽  
...  

Abstract We report the first observation of a novel confinement regime in a stellarator plasma, characterized by increased confinement and reduced turbulent fluctuations. The transition to this new regime is driven by the injection of sub-millimetric boron powder grains into the plasma. With the line averaged electron density being kept constant, substantial increase of stored energy, electron and ion temperature have been observed. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range 100 ≤ f [kHz] ≤ 200 are excited. The access to this regime has been observed for different heating schemes, namely with both electron and ion cyclotron resonant radio frequency, and neutral beams, for both directions of the magnetic field, and for both hydrogen and deuterium plasmas.


Author(s):  
Vadim Skalyga ◽  
Ivan Izotov ◽  
Alexander G Shalashov ◽  
Egor D Gospodchikov ◽  
Elena Kiseleva ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Abhik Samui ◽  
Julia M. Yeomans ◽  
Sumesh P. Thampi

Different flow regimes realised by a channel-confined active nematic have a characteristic length same as channel width. Flow structures exhibit the intrinsic length scale of the fluid only in the fully developed active turbulence regime.


2020 ◽  
Vol 12 (4) ◽  
pp. 2705-2724
Author(s):  
Felix Nieberding ◽  
Christian Wille ◽  
Gerardo Fratini ◽  
Magnus O. Asmussen ◽  
Yuyang Wang ◽  
...  

Abstract. The Tibetan alpine steppe ecosystem covers an area of roughly 800 000 km2 and contains up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93 Pg C for the Tibet Autonomous Region only (472 037 km2). With temperatures rising 2 to 3 times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on the ecosystem–atmosphere exchange of carbon dioxide (CO2) and water vapor (H2O). Here, we provide the first multiyear data set of CO2 and H2O fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements. The gas analyzer self-heating effect during cold conditions was evaluated using the standard correction procedure and newly revised formulations (Burba et al., 2008; Frank and Massman, 2020). A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO2 fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO2 due to global warming. The data are freely available at https://doi.org/10.5281/zenodo.3733202 (Nieberding et al., 2020a) and https://doi.org/10.11888/Meteoro.tpdc.270333 (Nieberding et al., 2020b) and may help us to better understand the role of the Tibetan alpine steppe in the global carbon–climate feedback.


2020 ◽  
Vol 101 (11) ◽  
pp. E2005-E2021
Author(s):  
Ad Stoffelen ◽  
Angela Benedetti ◽  
Régis Borde ◽  
Alain Dabas ◽  
Pierre Flamant ◽  
...  

AbstractThe Aeolus mission objectives are to improve numerical weather prediction (NWP) and enhance the understanding and modeling of atmospheric dynamics on global and regional scale. Given the first successes of Aeolus in NWP, it is time to look forward to future vertical wind profiling capability to fulfill the rolling requirements in operational meteorology. Requirements for wind profiles and information on vertical wind shear are constantly evolving. The need for high-quality wind and profile information to capture and initialize small-amplitude, fast-evolving, and mesoscale dynamical structures increases, as the resolution of global NWP improved well into the 3D turbulence regime on horizontal scales smaller than 500 km. In addition, advanced requirements to describe the transport and dispersion of atmospheric constituents and better depict the circulation on climate scales are well recognized. Direct wind profile observations over the oceans, tropics, and Southern Hemisphere are not provided by the current global observing system. Looking to the future, most other wind observation techniques rely on cloud or regions of water vapor and are necessarily restricted in coverage. Therefore, after its full demonstration, an operational Aeolus-like follow-on mission obtaining globally distributed wind profiles in clear air by exploiting molecular scattering remains unique.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 952
Author(s):  
Francisco O. Miranda ◽  
Fernando M. Ramos ◽  
Celso von Randow ◽  
Cléo Q. Dias-Júnior ◽  
Marcelo Chamecki ◽  
...  

We apply different methods for detection of extreme phenomena (EP) in air-turbulent time series measured in the nocturnal boundary layer above the Amazon forest. The methods used were: (a) a Morlet complex wavelet transform, which is often used in analysis of non-linear application processes. Through the use of the wavelet, it is possible to observe a phase singularity that involves a strong interaction between an extensive range of scales; (b) recurrence plot tests, which were used to identify a sudden change between different stable atmospheric states. (c) statistical analysis of early-warning signals, which verify simultaneous increases in the autocorrelation function and in the variance in the state variable; and (d) analysis of wind speed versus turbulent kinetic energy to identify different turbulent regimes in the stable boundary layer. We found it is adequate to use a threshold to classify the cases of strong turbulence regime, as a result of the occurrence of EP in the tropical atmosphere. All methods used corroborate and indicate synergy between events that culminate in what we classify as EP of the stable boundary layer above the tropical forest.


Sign in / Sign up

Export Citation Format

Share Document