bottom plate
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 101)

H-INDEX

23
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 653
Author(s):  
Jinguang Zhang ◽  
Jun Rao ◽  
Lei Ma ◽  
Xianglong Wen

In this paper, based on the composite laminated plate theory and a strain energy model, the damping capacity of a Carbon Fiber Reinforced Plastics (CFRP) raft frame was studied. According to the finite element analysis (FEA) and damping ratio prediction model, the influences of different layups on the damping capacity of the raft frame and its components (top/bottom plate and I-support) were discussed. Comparing the FEA results with the test results, it can be figured out that the CFRP laminate layup has a great influence on the damping ratio of the raft frame, and the maximum error of the first-order natural frequency and damping ratio of the top/bottom plate were 5.6% and 15.1%, respectively. The maximum error of the first-order natural frequency of the I-support between the FEA result and the test result was 7.5%, suggesting that because of the stress concentration, the error of the damping ratio was relatively large. As for the raft frame, the damping performance was affected by the I-support arrangement and the simulation analysis was in good agreement with the experimental results. This study can provide a useful reference for improving the damping performance of CFRP raft frames.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zi Wang ◽  
Narendra Kurnia Putra ◽  
Hitomi Anzai ◽  
Makoto Ohta

Stent implantation has been a primary treatment for stenosis and other intravascular diseases. However, the struts expansion procedure might cause endothelium lesion and the structure of the struts could disturb the blood flow environment near the wall of the blood vessel. These changes could damage the vascular innermost endothelial cell (EC) layer and pose risks of restenosis and post-deployment thrombosis. This research aims to investigate the effect of flow alterations on EC distribution in the presence of gap between two struts within the parallel flow chamber. To study how the gap presence impacts EC migration and the endothelialization effect on the surface of the struts, two struts were placed with specific orientations and positions on the EC layer in the flow chamber. After a 24-h exposure under wall shear stress (WSS), we observed the EC distribution conditons especially in the gap area. We also conducted computational fluid dynamics (CFD) simulations to calculate the WSS distribution. High EC-concentration areas on the bottom plate corresponded to the high WSS by the presence of gap between the two struts. To find the relation between the WSS and EC distributions on the fluorescence images, WSS condition by CFD simulation could be helpful for the EC distribution. The endothelialization rate, represented by EC density, on the downstream sides of both struts was higher than that on the upstream sides. These observations were made in the flow recirculation at the gap area between two struts. On two side surfaces between the gaps, meaning the downstream at the first and the upstream at the second struts, EC density differences on the downstream surfaces of the first strut were higher than on the upstream surfaces of the second strut. Finally, EC density varied along the struts when the struts were placed at tilted angles. These results indicate that, by the presence of gap between the struts, ECs distribution could be predicted in both perpendicular and tiled positions. And tiled placement affect ECs distribution on the strut side surfaces.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261355
Author(s):  
Qinjian Zhan ◽  
Niaz Muhammad Shahani ◽  
Zhicheng Xue ◽  
Shengqiang Li

Complex boundary conditions are the major influencing factors of coal caving law in the pseudo-inclined working face. The main purpose of this study is to analyze coal caving law of flexible shield support and then to establish the internal relations among coal caving parameters under complex boundary conditions. Firstly, the law of coal caving in different falling modes is simulated physically. Secondly, the coal caving shape, displacement field, and contact force field is simulated. Then, coal caving law and process parameters is analyzed theoretically. Finally, the test was performed in Bai-Ji Mine. The research shows that ellipsoidal ore drawing theory has universal applicability in coal drawing law analysis and parameter optimization. After the Isolated Extraction Zone and Isolated Movement Zone reach the roof, the expansion speed is marked by a short delay, and then, while expanding to the floor, two butted incomplete ellipsoids are formed. There is a time-space difference in coal caving after the support, and some coal will be mined in the next round of coal caving. There are obvious differences in the coal loosening range, displacement field, and contact force field on both sides of the long axis. When the support falls along with the bottom plate, it is more conducive to the release of coal. The test shows that the research is of great significance for optimizing the caving parameters of flexible shield support in the pseudo-inclined working face of the steep seam.


2021 ◽  
Author(s):  
Hang Xi ◽  
Qiong Wu ◽  
Xiaojun Xie ◽  
Ruigang Zhang ◽  
Bo Yang ◽  
...  

In this paper, the development and prospect of tower-shaped solar thermal power generation technology are briefly introduced, and the importance of production quality of molten salt storage tank in tower thermal power storage system is proposed. The production technology and construction process of molten salt storage tank are described in detail, and the key technology and multiple problems affecting quality are analysed. Aiming at the problem of fillet weld deformation, this paper proposes a new anti-deformation tooling and welding operation technology. At last, this paper presents a construction technology method and a solution to improve the welding quality of molten salt storage tank, which can effectively solve the problem that the bottom plate of molten salt storage tank is out of standard due to welding.


2021 ◽  
Vol 11 (24) ◽  
pp. 11927
Author(s):  
Huafei He ◽  
Zhaoping Li

The seismic response of a fabricated subway station is a complex structural connection problem that depends on the mechanical properties of the joints. In order to obtain the optimal joint distribution of a fabricated station structure under earthquake action, three finite element models of a single ring structure of fabricated subway stations assembled with seven, five, and four prefabricated components were proposed. Seismic wave characteristics, peak acceleration, and coupled horizontal and vertical seismic components were considered to study the seismic response of the fabricated subway station structure with different forms of the joint distribution. The dynamic time history method was used to analyze the seismic response in three aspects: structure plastic strain, interlayer relative deformation, and internal force. The damage indexes and residual strength indexes of the joints were offered based on the concrete damage index to evaluate the joints’ damage degree. The results showed that the joints of the vault or bottom plate had little influence on the seismic response of the fabricated station structure. The sidewall joints had the obvious seismic response and the most severe damage under horizontal ground motion or coupled ground motion, which were the weak joints of the fabricated station structure. The existence of vertical ground motion aggravated the damage degree of sidewall joints, making the damage occurrence time of sidewall joints earlier and the damage end time extended. On the premise of meeting the mechanical load and site requirements, an assembly scheme with fewer prefabricated components can be selected.


Author(s):  
Philippe Laurençot ◽  
Katerina Nik ◽  
Christoph Walker

AbstractA model for a MEMS device, consisting of a fixed bottom plate and an elastic plate, is studied. It was derived in a previous work as a reinforced limit when the thickness of the insulating layer covering the bottom plate tends to zero. This asymptotic model inherits the dielectric properties of the insulating layer. It involves the electrostatic potential in the device and the deformation of the elastic plate defining the geometry of the device. The electrostatic potential is given by an elliptic equation with mixed boundary conditions in the possibly non-Lipschitz region between the two plates. The deformation of the elastic plate is supposed to be a critical point of an energy functional which, in turn, depends on the electrostatic potential due to the force exerted by the latter on the elastic plate. The energy functional is shown to have a minimizer giving the geometry of the device. Moreover, the corresponding Euler–Lagrange equation is computed and the maximal regularity of the electrostatic potential is established.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao Zhang ◽  
Yan Gao ◽  
Bo Huo

Fluid shear stress (FSS) plays a crucial role for cell migration within bone cavities filled with interstitial fluid. Whether the local wall FSS distribution on cell surface depends on the global gradient FSS of flow field should be clarified to explain our previous experimental observation. In this study, finite element models of discretely distributed or hexagonal closely packed cells adherent on the bottom plate in a modified plate flow chamber with different global FSS gradient were constructed. Fluid-solid coupling simulation of wall fluid shear stress on cells was performed, and two types of data analysis methods were used. The results showed that the profile of local FSS distribution on cell surface coincides with the angle of cell migration determined in the previous study, suggesting that RAW264.7 osteoclast precursors may sense the global FSS gradient and migrate toward the low-FSS region under a high gradient. For hexagonal closely packed cells, this profile on the surface of central cells decreased along with the increase of cell spacing, which may be caused by the higher local FSS difference along the direction of FSS gradient in the regions close to the bottom plate. This study may explain the phenomenon of the targeted migration of osteoclast precursors under gradient FSS field and further provide insights into the mechanism of mechanical stimulation-induced bone remodeling.


2021 ◽  
Author(s):  
Le Bai ◽  
Hongmou He ◽  
Shu Li ◽  
Xinwei Guo ◽  
En-kuan Li

According to the aims of the runoff protection in coal mining area, taking Jinjie coal mine as an example, the risk zonation and mechanism of runoff leakage were carried out based on the dimen-sionless multi-factor information fusion technique. Based on the analysis of field exploration and borehole data, four key factors affecting the runoff leakage from the roof were identified, which included the deposition features of aquifer in Sala Wusu Group, the distribution of overburden rock and soil mass, effective thickness of aquiclude layer and the height of water flow cracking zone. The evaluation criterion was whether the development height of the water flow cracking zone reaches or exceeds the bottom plate of the sandy phreatic aquifer and even penetrates the surface ground, which results in the complete or partial leakage of the phreatic water. According the evaluation criterion, the influence of coal mining disturbance on runoff leakage was divided into three zones: zone of seriously runoff leakage, zone of general runoff leakage and zone of slight runoff leakage. Furthermore, the influence mechanism of different zones in coal mining also been discussed preliminarily, which included drainage Sarawusu aquifer, groundwater leakage in Sarawusu aquifer, water level fluctuation in Sarawusu aquifer and so on. Finally, classification pattern diagram was drawn.


2021 ◽  
Vol 850 (1) ◽  
pp. 012019
Author(s):  
R Nishanth ◽  
D Kishok Rai ◽  
Hemkar Sharma ◽  
Rivington Kingston ◽  
Davidson Jebaseelan ◽  
...  

Abstract Maintenance and continuously monitoring the condition of above ground storage tanks are significant when the tanks are placed in service. The American Petroleum Institution (API) 653 and other international codes provides the minimum requirements for inspection & maintaining the integrity of tanks during its service. The tank settlement is one of the major threats for tank’s integrity. In this paper, a storage tank is assessed for uniform settlement under various loading condition such as seismic, dead load, static load, corrosion loss of shell plate etc. In the present study, a finite element model is designed with uniform settlement condition and study of its governing hoop stress at shell plate has been carried out under different loading conditions. A fire water storage tank (constructed with IS 2060 GR. B material) and different seismic zones in India are taken for this study. The finite element analysis simulation shows that increase of hoop stress in the bottom shell course due to uniform settlement, the decrease in plate thickness and with different seismic active regions. Moreover, the maximum stresses have been observed at shell bottom course (close to bottom plate).


Sign in / Sign up

Export Citation Format

Share Document