State Abstraction in Real-Time Heuristic Search

Author(s):  
Vadim Bulitko
2007 ◽  
Vol 30 ◽  
pp. 51-100 ◽  
Author(s):  
V. Bulitko ◽  
N. Sturtevant ◽  
J. Lu ◽  
T. Yau

Real-time heuristic search methods are used by situated agents in applications that require the amount of planning per move to be independent of the problem size. Such agents plan only a few actions at a time in a local search space and avoid getting trapped in local minima by improving their heuristic function over time. We extend a wide class of real-time search algorithms with automatically-built state abstraction and prove completeness and convergence of the resulting family of algorithms. We then analyze the impact of abstraction in an extensive empirical study in real-time pathfinding. Abstraction is found to improve efficiency by providing better trading offs between planning time, learning speed and other negatively correlated performance measures.


2020 ◽  
Vol 34 (06) ◽  
pp. 9827-9834
Author(s):  
Maximilian Fickert ◽  
Tianyi Gu ◽  
Leonhard Staut ◽  
Wheeler Ruml ◽  
Joerg Hoffmann ◽  
...  

Suboptimal heuristic search algorithms can benefit from reasoning about heuristic error, especially in a real-time setting where there is not enough time to search all the way to a goal. However, current reasoning methods implicitly or explicitly incorporate assumptions about the cost-to-go function. We consider a recent real-time search algorithm, called Nancy, that manipulates explicit beliefs about the cost-to-go. The original presentation of Nancy assumed that these beliefs are Gaussian, with parameters following a certain form. In this paper, we explore how to replace these assumptions with actual data. We develop a data-driven variant of Nancy, DDNancy, that bases its beliefs on heuristic performance statistics from the same domain. We extend Nancy and DDNancy with the notion of persistence and prove their completeness. Experimental results show that DDNancy can perform well in domains in which the original assumption-based Nancy performs poorly.


2004 ◽  
Vol 35 (6) ◽  
pp. 89-97
Author(s):  
Makoto Koshino ◽  
Tadashi Okamine ◽  
Haruhiko Kimura ◽  
Sadaki Hirose

2015 ◽  
Vol 225 ◽  
pp. 1-23 ◽  
Author(s):  
Nicolás Rivera ◽  
Jorge A. Baier ◽  
Carlos Hernández
Keyword(s):  

2008 ◽  
Vol 32 ◽  
pp. 419-452 ◽  
Author(s):  
V. Bulitko ◽  
M. Lustrek ◽  
J. Schaeffer ◽  
Y. Bjornsson ◽  
S. Sigmundarson

Real-time heuristic search is a challenging type of agent-centered search because the agent's planning time per action is bounded by a constant independent of problem size. A common problem that imposes such restrictions is pathfinding in modern computer games where a large number of units must plan their paths simultaneously over large maps. Common search algorithms (e.g., A*, IDA*, D*, ARA*, AD*) are inherently not real-time and may lose completeness when a constant bound is imposed on per-action planning time. Real-time search algorithms retain completeness but frequently produce unacceptably suboptimal solutions. In this paper, we extend classic and modern real-time search algorithms with an automated mechanism for dynamic depth and subgoal selection. The new algorithms remain real-time and complete. On large computer game maps, they find paths within 7% of optimal while on average expanding roughly a single state per action. This is nearly a three-fold improvement in suboptimality over the existing state-of-the-art algorithms and, at the same time, a 15-fold improvement in the amount of planning per action.


2016 ◽  
Vol 57 ◽  
pp. 307-343 ◽  
Author(s):  
Nathan R. Sturtevant ◽  
Vadim Bulitko

Real-time agent-centered heuristic search is a well-studied problem where an agent that can only reason locally about the world must travel to a goal location using bounded computation and memory at each step. Many algorithms have been proposed for this problem and theoretical results have also been derived for the worst-case performance with simple examples demonstrating worst-case performance in practice. Lower bounds, however, have not been widely studied. In this paper we study best-case performance more generally and derive theoretical lower bounds for reaching the goal using LRTA*, a canonical example of a real-time agent-centered heuristic search algorithm. The results show that, given some reasonable restrictions on the state space and the heuristic function, the number of steps an LRTA*-like algorithm requires to reach the goal will grow asymptotically faster than the state space, resulting in ``scrubbing'' where the agent repeatedly visits the same state. We then show that while the asymptotic analysis does not hold for more complex real-time search algorithms, experimental results suggest that it is still descriptive of practical performance.


Sign in / Sign up

Export Citation Format

Share Document