Active Components for Optical Systems

POF Handbook ◽  
2008 ◽  
pp. 295-357
2012 ◽  
Author(s):  
Tibor Agócs ◽  
Lars Venema ◽  
Visa Korkiakoski ◽  
Gabby Kroes

2020 ◽  
Vol 14 (4) ◽  
pp. 644-653
Author(s):  
Andreas Gebhardt ◽  
Matthias Beier ◽  
Erik Schmidt ◽  
Thomas Rendel ◽  
Ute Gawronski ◽  
...  

The present work demonstrates that exactly manufactured references for joining, mounting, and metrology purposes are crucial in the effective assembly of high-quality optical systems. Based on the alignment turning of spherical and aspherical lenses, the proposed approach can be transferred to non-rotational symmetric elements such as prisms, active components (e.g., laser diodes), and freeform mirrors. The complexity of the optical component decides whether on-machine metrology or specific measurement setups need to be used to determine the position and orientation of the references with respect to the optical function. The resulting correction data are considered during the machining process. The subsequent correction cycle realizes mounting and metrology references down to sub-micron precision using diamond-machining techniques. This approach facilitates the assembly of demanding optical systems and even freeform arrangements in a predictable and passive manner. Different machining setups as well as the corresponding metrology approaches are demonstrated, and results are presented for representative components. The effectiveness of the approach is discussed using rotationally symmetrical lens systems and a snap-together freeform mirror system.


2012 ◽  
Vol 82 ◽  
pp. 64-74
Author(s):  
Natalie Clark

Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications included guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. Active components presented allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.


2009 ◽  
Vol 1196 ◽  
Author(s):  
Juefei Zhou ◽  
Kenneth Singer ◽  
Hyunmin Song ◽  
Yeheng Wu ◽  
Joseph Lott ◽  
...  

AbstractPolymers are receiving considerable attention as components in novel optical systems because of the tailored functionality, easy manufacturing, and relatively low cost. The processing of layered polymeric systems by coextrusion is a method to produce films comprising hundreds to thousands of alternating layers with thickness spanning the nanoscale to microscale in a single, one-step roll-to-roll process. Several layered polymer optical systems have been fabricated by coextrusion, including tunable refractive index elastomers, photonic crystals, and mechanically tunable photonic crystals. Layered polymeric optical systems made by coextrusion can also incorporate active components such as laser dyes for all-polymer laser systems.


Author(s):  
J T Fourie

The attempts at improvement of electron optical systems to date, have largely been directed towards the design aspect of magnetic lenses and towards the establishment of ideal lens combinations. In the present work the emphasis has been placed on the utilization of a unique three-dimensional crystal objective aperture within a standard electron optical system with the aim to reduce the spherical aberration without introducing diffraction effects. A brief summary of this work together with a description of results obtained recently, will be given.The concept of utilizing a crystal as aperture in an electron optical system was introduced by Fourie who employed a {111} crystal foil as a collector aperture, by mounting the sample directly on top of the foil and in intimate contact with the foil. In the present work the sample was mounted on the bottom of the foil so that the crystal would function as an objective or probe forming aperture. The transmission function of such a crystal aperture depends on the thickness, t, and the orientation of the foil. The expression for calculating the transmission function was derived by Hashimoto, Howie and Whelan on the basis of the electron equivalent of the Borrmann anomalous absorption effect in crystals. In Fig. 1 the functions for a g220 diffraction vector and t = 0.53 and 1.0 μm are shown. Here n= Θ‒ΘB, where Θ is the angle between the incident ray and the (hkl) planes, and ΘB is the Bragg angle.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-343-C2-348
Author(s):  
L. A. LUGIATO ◽  
C. OLDANO ◽  
Kaige WANG ◽  
L. SANTIRANA ◽  
L. M. NARDUCCI ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document