scholarly journals Intelligent Optical Systems Using Adaptive Optics

2012 ◽  
Vol 82 ◽  
pp. 64-74
Author(s):  
Natalie Clark

Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications included guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. Active components presented allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

2020 ◽  
Vol 51 (3) ◽  
pp. 17-19
Author(s):  
Maria Viñas

Adaptive optics based visual simulators with deformable mirrors, spatial light modulators or optotunable lenses are increasingly used to simulate vision through different complex multifocal lens designs. Their final utility in the clinic relies on their capability to predict visual performance after an ocular surgery.


1992 ◽  
Vol 31 (29) ◽  
pp. 6185 ◽  
Author(s):  
Jeffrey A. Davis ◽  
Heidi M. Schley-Seebold ◽  
Don M. Cottrell

1998 ◽  
Vol 148 (4-6) ◽  
pp. 323-330 ◽  
Author(s):  
G.T Bold ◽  
T.H Barnes ◽  
J Gourlay ◽  
R.M Sharples ◽  
T.G Haskell

2021 ◽  
Vol 6 ◽  
pp. 76
Author(s):  
Mick A. Phillips ◽  
David Miguel Susano Pinto ◽  
Nicholas Hall ◽  
Julio Mateos-Langerak ◽  
Richard M. Parton ◽  
...  

We have developed “Microscope-Cockpit” (Cockpit), a highly adaptable open source user-friendly Python-based Graphical User Interface (GUI) environment for precision control of both simple and elaborate bespoke microscope systems. The user environment allows next-generation near instantaneous navigation of the entire slide landscape for efficient selection of specimens of interest and automated acquisition without the use of eyepieces. Cockpit uses “Python-Microscope” (Microscope) for high-performance coordinated control of a wide range of hardware devices using open source software. Microscope also controls complex hardware devices such as deformable mirrors for aberration correction and spatial light modulators for structured illumination via abstracted device models. We demonstrate the advantages of the Cockpit platform using several bespoke microscopes, including a simple widefield system and a complex system with adaptive optics and structured illumination. A key strength of Cockpit is its use of Python, which means that any microscope built with Cockpit is ready for future customisation by simply adding new libraries, for example machine learning algorithms to enable automated microscopy decision making while imaging.


2000 ◽  
Author(s):  
Alexander Wolter ◽  
Detlef Kunze ◽  
Wolfgang Doleschal ◽  
Hubert Lakner ◽  
Günter Zimmer

Abstract Spatial light modulators (SLM) are electro-optical devices employed as optical pattern generators in applications like projection displays, direct-writing systems for photolithographic patterning, adaptive optics or optical signal processing. Here we report on the “moving liquid mirror” (MLM) as a new micromechanical actuator technology based on a deformable oil film on an aluminum mirror with electrode structure. The actuator is suitable for integration on a silicon backplane as CMOS-addressing circuit. Thus production in standard CMOS-technology is possible. A theoretical analysis of the device behavior is given, and the results of simulations are presented. Measurements on passive devices show good agreement with the simulations. Finally, active MLM-devices have been fabricated. Images can be programmed into the devices and observed under a microscope (figure 1).


2000 ◽  
Author(s):  
David C. Dayton ◽  
Sergio R. Restaino ◽  
John D. Gonglewski

Sign in / Sign up

Export Citation Format

Share Document