porphyromonas gingivalis
Recently Published Documents





2022 ◽  
Vol 14 (1) ◽  
A Progulske-Fox ◽  
SS Chukkapalli ◽  
H Getachew ◽  
WA Dunn ◽  
JD Oliver

Sumiko Yoshida ◽  
Masahiro Hatasa ◽  
Yujin Ohsugi ◽  
Yosuke Tsuchiya ◽  
Anhao Liu ◽  

Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.

2022 ◽  
pp. 1-22
Anna Barlach Pritchard ◽  
Zsolt Fabian ◽  
Clare L. Lawrence ◽  
Glyn Morton ◽  
StJohn Crean ◽  

Background: The effects of the key pathogens and virulence factors associated with gum disease such as Porphyromonas gingivalis (P. gingivalis) on the central nervous system is of great interest with respect to development of neuropathologies and hence therapeutics and preventative strategies. Chronic infections and associated inflammation are known to weaken the first line of defense for the brain, the blood-brain barrier (BBB). Objective: The focus of this study is to utilize an established human in vitro BBB model to evaluate the effects of P. gingivalis virulence factors lipopolysaccharide (LPS) and outer membrane vesicles (OMVs) on a primary-derived human model representing the neurovascular unit of the BBB. Methods: Changes to the integrity of the BBB after application of P. gingivalis LPS and OMVs were investigated and correlated with transport of LPS. Additionally, the effect of P. gingivalis LPS and OMVs on human brain microvascular endothelial cells in monolayer was evaluated using immunofluorescence microscopy. Results: The integrity of the BBB model was weakened by application of P. gingivalis LPS and OMVs, as measured by a decrease in electrical resistance and a recovery deficit was seen in comparison to the controls. Application of P. gingivalis OMVs to a monoculture of human brain microvascular endothelial cells showed disruption of the tight junction zona occludens protein (ZO-1) compared to controls. Conclusion: These findings show that the integrity of tight junctions of the human BBB could be weakened by association with P. gingivalis virulence factors LPS and OMVs containing proteolytic enzymes (gingipains).

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 84
Yu-Chen Lee ◽  
Chih-Yi Liu ◽  
Chia-Long Lee ◽  
Ruo-Han Zhang ◽  
Chi-Jung Huang ◽  

Periodontal disease (PD) is one of the most prevalent disorders globally and is strongly associated with many other diseases. Inflammatory bowel disease (IBD), an inflammatory condition of the colon and the small intestine, is reported to be associated with PD through undetermined mechanisms. We analyzed taxonomic assignment files from the Crohn’s Disease Viral and Microbial Metagenome Project (PRJEB3206). The abundance of Porphyromonadaceae in fecal samples was significantly different between patients with Crohn’s disease and control volunteers. Dextran sulfate sodium was used to induce colitis in mice to reveal the effect of this periodontopathic pathogen in vivo. After intrarectal implantation of Porphyromonas gingivalis (Pg)—the primary pathogen causing PD—the disease activity index score, colonic epithelial loss, and inflammatory cell infiltration were intensified. In addition, tumor necrosis factor-α and interleukin-6 showed the highest levels in Pg-infected colons. This revealed the importance of Pg in the exacerbation of IBD. Thus, simultaneous treatment of PD should be considered for people with IBD. Moreover, implantation of Pg in the rectum worsened the clinical symptoms of colitis in mice. Because Pg participates in the pathogenesis of IBD, reducing the chances of it entering the intestine might prevent the worsening of this disorder.

Paul D. Veith ◽  
Mikio Shoji ◽  
Nichollas E. Scott ◽  
Eric C. Reynolds

Porphyromonas gingivalis is an oral pathogen primarily associated with severe periodontal disease and further associated with rheumatoid arthritis, dementia, cardiovascular disease, and certain cancers. Protein glycosylation can be important for a variety of reasons including protein function, solubility, protease resistance, and thermodynamic stability.

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 65
Mai Shinohara ◽  
Miki Maetani ◽  
Chiharu Kitada ◽  
Yasuko Nishigami ◽  
Ayaka Yazawa ◽  

This study aims to investigate six food additives (octanoic acid, decanoic acid, acesulfame K, aspartame, saccharin, and sucralose) used in foods for the elderly or people with dysphagia because of the effect of these food additives on Porphyromonas gingivalis (P. gingivalis), which is a keystone pathogen of periodontal diseases. The growth of P. gingivalis was inhibited by 5 mM octanoic acid, 1.25 mM decanoic acid, 1.25% acesulfame K, 0.0625% aspartame, 0.03125% saccharin, and 0.625% sucralose. In addition, these food additives showed bactericidal activity for planktonic P. gingivalis (5 mM octanoic acid, 5 mM decanoic acid, 0.25% aspartame, 0.25% saccharin, and 5% sucralose). Moreover, biofilm formation was inhibited by 10 mM octanoic acid, 10 mM decanoic acid, 10% acesulfame K, 0.35% aspartame, 0.5% saccharin, and 7.5% sucralose. Moreover, the same concentration of these food additives without aspartame killed P. gingivalis in the biofilm. Aspartame and sucralose did not show cytotoxicity to human cell lines at concentrations that affected P. gingivalis. These findings may be useful in clarifying the effects of food additives on periodontopathogenic bacteria.

Sign in / Sign up

Export Citation Format

Share Document