A Formal Description Language for Multi-Agent Architectures

Author(s):  
Stéphane Faulkner ◽  
Manuel Kolp ◽  
Yves Wautelet ◽  
Youssef Achbany
Author(s):  
Anet Potgieter ◽  
Judith Bishop

Most agent architectures implement autonomous agents that use extensive interaction protocols and social laws to control interactions in order to ensure that the correct behaviors result during run-time. These agents, organized into multi-agent systems in which all agents adhere to predefined interaction protocols, are well suited to the analysis, design and implementation of complex systems in environments where it is possible to predict interactions during the analysis and design phases. In these multi-agent systems, intelligence resides in individual autonomous agents, rather than in the collective behavior of the individual agents. These agents are commonly referred to as “next-generation” or intelligent components, which are difficult to implement using current component-based architectures. In most distributed environments, such as the Internet, it is not possible to predict interactions during analysis and design. For a complex system to be able to adapt in such an uncertain and non-deterministic environment, we propose the use of agencies, consisting of simple agents, which use probabilistic reasoning to adapt to their environment. Our agents collectively implement distributed Bayesian networks, used by the agencies to control behaviors in response to environmental states. Each agency is responsible for one or more behaviors, and the agencies are structured into heterarchies according to the topology of the underlying Bayesian networks. We refer to our agents and agencies as “Bayesian agents” and “Bayesian agencies.”


Author(s):  
Manuel Kolp ◽  
Yves Wautelet ◽  
Samedi Heng

Multi-agent systems (MAS) architectures are popular for building open, distributed, and evolving software required by today's business IT applications such as e-business systems, web services, or enterprise knowledge bases. Since the fundamental concepts of MAS are social and intentional rather than object, functional, or implementation-oriented, the design of MAS architectures can be eased by using social patterns. They are detailed agent-oriented design idioms to describe MAS architectures as composed of autonomous agents that interact and coordinate to achieve their intentions like actors in human organizations. This chapter presents social patterns and focuses on a framework aimed to gain insight into these patterns. The framework can be integrated into agent-oriented software engineering methodologies used to build MAS. The authors consider the broker social pattern to illustrate the framework. The mapping from system architectural design (through organizational architectural styles), to system detailed design (through social patterns), is overviewed with a data integration case study.


Sign in / Sign up

Export Citation Format

Share Document