robot control
Recently Published Documents


TOTAL DOCUMENTS

2824
(FIVE YEARS 450)

H-INDEX

49
(FIVE YEARS 7)

Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Peng Zhang ◽  
Junxia Zhang

Abstract Efficient and high-precision identification of dynamic parameters is the basis of model-based robot control. Firstly, this paper designed the structure and control system of the developed lower extremity exoskeleton robot. The dynamics modeling of the exoskeleton robot is performed. The minimum parameter set of the identified parameters is determined. The dynamic model is linearized based on the parallel axis theory. Based on the beetle antennae search algorithm (BAS) and particle swarm optimization (PSO), the beetle swarm optimization algorithm (BSO) was designed and applied to the identification of dynamic parameters. The update rule of each particle originates from BAS, and there is an individual’s judgment on the environment space in each iteration. This method does not rely on the historical best solution in the PSO and the current global optimal solution of the individual particle, thereby reducing the number of iterations and improving the search speed and accuracy. Four groups of test functions with different characteristics were used to verify the performance of the proposed algorithm. Experimental results show that the BSO algorithm has a good balance between exploration and exploitation capabilities to promote the beetle to move to the global optimum. Besides, the test was carried out on the exoskeleton dynamics model. This method can obtain independent dynamic parameters and achieve ideal identification accuracy. The prediction result of torque based on the identification method is in good agreement with the ideal torque of the robot control.


Author(s):  
Kai Guo ◽  
Yu Liu ◽  
Bin Xu ◽  
Yapeng Xu ◽  
Yongping Pan
Keyword(s):  

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110709
Author(s):  
Mingfang Chen ◽  
Kangkang Hu ◽  
Yongxia Zhang ◽  
Fengping Qi

The parallel leg of the quadruped robot has good structural stiffness, accurate movement, and strong bearing capacity, but it is complicated to control. To solve this problem, a series connection of parallel legs (SCPL) was proposed, as well as a control strategy combined with the central pattern generator (CPG). With the planar 5R parallel leg as the research object, the SCPL analysis method was used to analyze the leg structure. The topology of CPG network was built with the Hopf oscillator as the unit model, and the CPG was the core to model the robot control system. By continuously adjusting the parameters in the CPG control system and changing the connection weight, and the smooth transition between gaits was realized. The simulation results show that the SCPL analysis method can be effectively used in the analysis of parallel legs, and the control system can realize the smooth transition between gaits, which verifies the feasibility and effectiveness of the proposed control strategy.


2022 ◽  
Author(s):  
Nardênio Almeida Martins ◽  
Douglas Wildgrube Bertol

2021 ◽  
Vol 12 (1) ◽  
pp. 337
Author(s):  
Cheng-Yan Siao ◽  
Ting-Hsuan Chien ◽  
Rong-Guey Chang

At present, the global COVID-19 epidemic has not slowed down. To reduce the contact between people during the epidemic and prevent the epidemic from expanding, we have developed a robot to assist medical staff in patient guidance and communication services. The robot can provide an emergency contact so that users can immediately contact the counter for help. The user does not have face-face contact with the medical staff. When the robot encounters obstacles in the path of travel, the detected event and the time of occurrence are sent back to the back-end system. It also provides security personnel with real-time images and robot control rights to understand the situation and deal with it in real-time.


2021 ◽  
Vol 33 (6) ◽  
pp. 1326-1337
Author(s):  
Alfin Junaedy ◽  
◽  
Hiroyuki Masuta ◽  
Kei Sawai ◽  
Tatsuo Motoyoshi ◽  
...  

In this study, the teleoperation robot control on a mobile robot with 2D SLAM and object localization using LPWAN is proposed. The mobile robot is a technology gaining popularity due to flexibility and robustness in a variety of terrains. In search and rescue activities, the mobile robots can be used to perform some missions, assist and preserve human life. However, teleoperation control becomes a challenging problem for this implementation. The robust wireless communication not only allows the operator to stay away from dangerous area, but also increases the mobility of the mobile robot itself. Most of teleoperation mobile robots use Wi-Fi having high-bandwidth, yet short communication range. LoRa as LPWAN, on the other hand, has much longer range but low-bandwidth communication speed. Therefore, the combination of them complements each other’s weaknesses. The use of a two-LoRa configuration also enhances the teleoperation capabilities. All information from the mobile robot can be sent to the PC controller in relatively fast enough for real-time SLAM implementation. Furthermore, the mobile robot is also capable of real-time object detection, localization, and transmitting images. Another problem of LoRa communication is a timeout. We apply timeout recovery algorithms to handle this issue, resulting in more stable data. All data have been confirmed by real-time trials and the proposed method can approach the Wi-Fi performance with a low waiting time or delay.


Author(s):  
Petter Ögren ◽  
Christopher I. Sprague

In this article, we provide a control-theoretic perspective on the research area of behavior trees in robotics. The key idea underlying behavior trees is to make use of modularity, hierarchies, and feedback in order to handle the complexity of a versatile robot control system. Modularity is a well-known tool to handle software complexity by enabling the development, debugging, and extension of separate modules without detailed knowledge of the entire system. A hierarchy of such modules is natural, since robot tasks can often be decomposed into a hierarchy of subtasks. Finally, feedback control is a fundamental tool for handling uncertainties and disturbances in any low-level control system, but in order to enable feedback control on the higher level, where one module decides what submodule to execute, information regarding the progress and applicability of each submodule needs to be shared in the module interfaces. We describe how these three concepts can be used in theoretical analysis, practical design, and extensions and combinations with other ideas from control theory and robotics. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document