A Framework for Machine Learning with Ambiguous Objects

Author(s):  
Zhi-Hua Zhou
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Theyazn H.H Aldhyani ◽  
Ali Saleh Alshebami ◽  
Mohammed Y. Alzahrani

Chronic diseases represent a serious threat to public health across the world. It is estimated at about 60% of all deaths worldwide and approximately 43% of the global burden of chronic diseases. Thus, the analysis of the healthcare data has helped health officials, patients, and healthcare communities to perform early detection for those diseases. Extracting the patterns from healthcare data has helped the healthcare communities to obtain complete medical data for the purpose of diagnosis. The objective of the present research work is presented to improve the surveillance detection system for chronic diseases, which is used for the protection of people’s lives. For this purpose, the proposed system has been developed to enhance the detection of chronic disease by using machine learning algorithms. The standard data related to chronic diseases have been collected from various worldwide resources. In healthcare data, special chronic diseases include ambiguous objects of the class. Therefore, the presence of ambiguous objects shows the availability of traits involving two or more classes, which reduces the accuracy of the machine learning algorithms. The novelty of the current research work lies in the assumption that demonstrates the noncrisp Rough K-means (RKM) clustering for figuring out the ambiguity in chronic disease dataset to improve the performance of the system. The RKM algorithm has clustered data into two sets, namely, the upper approximation and lower approximation. The objects belonging to the upper approximation are favourable objects, whereas the ones belonging to the lower approximation are excluded and identified as ambiguous. These ambiguous objects have been excluded to improve the machine learning algorithms. The machine learning algorithms, namely, naïve Bayes (NB), support vector machine (SVM), K-nearest neighbors (KNN), and random forest tree, are presented and compared. The chronic disease data are obtained from the machine learning repository and Kaggle to test and evaluate the proposed model. The experimental results demonstrate that the proposed system is successfully employed for the diagnosis of chronic diseases. The proposed model achieved the best results with naive Bayes with RKM for the classification of diabetic disease (80.55%), whereas SVM with RKM for the classification of kidney disease achieved 100% and SVM with RKM for the classification of cancer disease achieved 97.53 with respect to accuracy metric. The performance measures, such as accuracy, sensitivity, specificity, precision, and F-score, are employed to evaluate the performance of the proposed system. Furthermore, evaluation and comparison of the proposed system with the existing machine learning algorithms are presented. Finally, the proposed system has enhanced the performance of machine learning algorithms.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Man-Wai Mak ◽  
Jen-Tzung Chien

2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Sign in / Sign up

Export Citation Format

Share Document