Entailment Multipliers: An Algebraic Characterization of Validity for Classical and Modal Logics

Author(s):  
Marcelo Finger ◽  
Mauricio S. C. Hernandes
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Yasunori Maekawa ◽  
Yoshihiro Ueda

In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic system with general relaxation and provide the algebraic characterization for the uniform dissipativity up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric relaxation, with a full generality and optimality.


1991 ◽  
Vol 14 (4) ◽  
pp. 477-491
Author(s):  
Waldemar Korczynski

In this paper an algebraic characterization of a class of Petri nets is given. The nets are characterized by a kind of algebras, which can be considered as a generalization of the concept of the case graph of a (marked) Petri net.


1981 ◽  
Vol 19 (5) ◽  
pp. 929-955 ◽  
Author(s):  
Ov. Mekenyan ◽  
D. Bonchev ◽  
N. Trinajsti?

2015 ◽  
Vol 44 (2) ◽  
pp. 486-499
Author(s):  
Samuel Volkweis Leite ◽  
Alexander Prestel

1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


Sign in / Sign up

Export Citation Format

Share Document