scholarly journals Rewriting Systems for Reachability in Vector Addition Systems with Pairs

Author(s):  
Paulin Jacobé de Naurois ◽  
Virgile Mogbil
2006 ◽  
Vol 17 (01) ◽  
pp. 147-165 ◽  
Author(s):  
MICHAEL MUSKULUS ◽  
ROBERT BRIJDER

We discuss aspects of biological relevance to the modelling of bio-computation in a multiset rewriting system context: turnover, robustness against perturbations, and the dataflow programming paradigm. The systems under consideration are maximally parallel and asynchronous parallel membrane systems, the latter corresponding to computation in which the notion of time is operationally meaningless. A natural geometrical setting which seems promising for the study of computational processes in general multiset rewriting systems is presented. Configuration space corresponds to a subset of the lattice [Formula: see text], d ∈ N, and state transitions correspond to vector addition. The similarities and differences with Vector Addition Systems and Petri nets are discussed. Symbolic dynamics are introduced on special partitions of configuration space and we indicate different notions of complexity for membrane systems based on this and related concepts such as graph complexity and minimal automata. Some examples of synchronized, pipelined dataflow computations are given and decompositions into functional subunits are briefly commented on.


1995 ◽  
Vol 60 (5) ◽  
pp. 856-862
Author(s):  
Gejza Suchár ◽  
Ivan Danihel

Dipole moments of a series of para-substituted N-phenylsulfonyl-N'-allylthioureas were determined. Comparison of the experimentally found dipole moments with those calculated by vector addition of bond and group moments has shown that (E) conformation at the N-C bonds is preferred. The same result was obtained from the N-H stretching vibrations. The results are compatible with a synperiplanar arrangement at the C-C bond of the allyl moiety.


1982 ◽  
Vol 5 (3-4) ◽  
pp. 279-299
Author(s):  
Alberto Pettorossi

In this paper we consider combinators as tree transducers: this approach is based on the one-to-one correspondence between terms of Combinatory Logic and trees, and on the fact that combinators may be considered as transformers of terms. Since combinators are terms themselves, we will deal with trees as objects to be transformed and tree transformers as well. Methods for defining and studying tree rewriting systems inside Combinatory Weak Reduction Systems and Weak Combinatory Logic are also analyzed and particular attention is devoted to the problem of finiteness and infinity of the generated tree languages (here defined). This implies the study of the termination of the rewriting process (i.e. reduction) for combinators.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 373
Author(s):  
Khaled Abuhmaidan ◽  
Monther Aldwairi ◽  
Benedek Nagy

Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: it is not closed under vector-addition, which gives a challenge. The points of the triangular grid are represented by zero-sum and one-sum coordinate-triplets keeping the symmetry of the grid and reflecting the orientations of the triangles. This system is expanded to the plane using restrictions like, at least one of the coordinates is an integer and the sum of the three coordinates is in the interval [−1,1]. However, the vector arithmetic is still not straightforward; by purely adding two such vectors the result may not fulfill the above conditions. On the other hand, for various applications of digital grids, e.g., in image processing, cartography and physical simulations, one needs to do vector arithmetic. In this paper, we provide formulae that give the sum, difference and scalar product of vectors of the continuous coordinate system. Our work is essential for applications, e.g., to compute discrete rotations or interpolations of images on the triangular grid.


2021 ◽  
Vol 178 (3) ◽  
pp. 173-185
Author(s):  
Arthur Adinayev ◽  
Itamar Stein

In this paper, we study a certain case of a subgraph isomorphism problem. We consider the Hasse diagram of the lattice Mk (the unique lattice with k + 2 elements and one anti-chain of length k) and find the maximal k for which it is isomorphic to a subgraph of the reduction graph of a given one-rule string rewriting system. We obtain a complete characterization for this problem and show that there is a dichotomy. There are one-rule string rewriting systems for which the maximal such k is 2 and there are cases where there is no maximum. No other intermediate option is possible.


Sign in / Sign up

Export Citation Format

Share Document