point lattice
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

CrystEngComm ◽  
2022 ◽  
Author(s):  
Angelo Gavezzotti ◽  
Leonardo Lo Presti ◽  
Silvia Rizzato

The science of organic crystals and materials has seen in a few decades a spectacular improvement from months to minutes for an X-ray structure determination and from single-point lattice energy...


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 373
Author(s):  
Khaled Abuhmaidan ◽  
Monther Aldwairi ◽  
Benedek Nagy

Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: it is not closed under vector-addition, which gives a challenge. The points of the triangular grid are represented by zero-sum and one-sum coordinate-triplets keeping the symmetry of the grid and reflecting the orientations of the triangles. This system is expanded to the plane using restrictions like, at least one of the coordinates is an integer and the sum of the three coordinates is in the interval [−1,1]. However, the vector arithmetic is still not straightforward; by purely adding two such vectors the result may not fulfill the above conditions. On the other hand, for various applications of digital grids, e.g., in image processing, cartography and physical simulations, one needs to do vector arithmetic. In this paper, we provide formulae that give the sum, difference and scalar product of vectors of the continuous coordinate system. Our work is essential for applications, e.g., to compute discrete rotations or interpolations of images on the triangular grid.


Author(s):  
Renaud Coulangeon ◽  
Achill Schürmann

Abstract In [ 3] we considered energy minimization of pair potentials among periodic sets of a fixed-point density. For a large class of potentials we presented sufficient conditions for a point lattice to give a local optimum among periodic sets. We hereby, in particular, derived a local version of Cohn and Kumar’s conjecture [ 1, Conjecture 9.4] by which the hexagonal lattice $\textsf{A}_2$, the root lattice $\textsf{E}_8$, and the Leech lattice are globally universally optimal. Latter conjecture has recently been proved for $\textsf{E}_8$ and the Leech lattice by Cohn et al. [ 2].


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Khaled Abuhmaidan ◽  
Benedek Nagy

The triangular plane is the plane which is tiled by the regular triangular tessellation. The underlying discrete structure, the triangular grid, is not a point lattice. There are two types of triangle pixels. Their midpoints are assigned to them. By having a real-valued translation of the plane, the midpoints of the triangles may not be mapped to midpoints. This is the same also on the traditional square grid. However, the redigitized result on the square grid always gives a bijection (gridpoints of the square grid are mapped to gridpoints in a bijective way). This property does not necessarily hold on to the triangular plane, i.e., the redigitized translated points may not be mapped to the original points by a bijection. In this paper, we characterize the translation vectors that cause non bijective translations. Moreover, even if a translation by a vector results in a bijection after redigitization, the neighbor pixels of the original pixels may not be mapped to the neighbors of the resulting pixel, i.e., a bijective translation may not be digitally ‘continuous’. We call that type of translation semi-bijective. They are actually bijective but do not keep the neighborhood structure, and therefore, they seemingly destroy the original shape. We call translations strongly bijective if they are bijective and also the neighborhood structure is kept. Characterizations of semi- and strongly bijective translations are also given.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Antonio Bianconi ◽  
Thomas Jarlborg

AbstractEmerets’s experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.


Sign in / Sign up

Export Citation Format

Share Document