triangular grid
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 53)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Kong Fanxiao ◽  
Yao Huazhong ◽  
Xie Weidong

In recent years, many scholars have conducted in-depth and extensive research on the mechanical properties, preparation methods, and structural optimization of grid structural materials. In this paper, the structural characteristics of composite intelligent grid are studied by combining theoretical analysis with experiments. According to the existing conditions in the laboratory, the equilateral triangular grid structure experimental pieces were prepared. In this paper, principal component analysis combined with nearest neighbor method was used to detect the damage of composite plates. On this basis, the multiobjective robustness optimization of the structure is carried out based on artificial intelligence algorithm, which makes the structure quality and its sensitivity to uncertain parameters lower. Particle swarm optimization (PSO) is used in neural network training. The damage characteristics of different grid structures, different impact positions, and different impact energies were studied. The results show that the structural damage types, areas, and propagation characteristics are very different when the structure is impacted at different positions, which verifies that the grid structure has a good ability to limit the damage diffusion and shows that the grid structure has a good ability to resist damage.


Author(s):  
Н.М. Чернышов ◽  
О.В. Авсеева

Работа посвящена реализации алгоритма процедурной генерации нерегулярной четырехугольной сетки, позволяющего рассчитывать сетку для большой области в реальном времени. При генерации используются кубическая система координат, в которой строится регулярная треугольная сетка для каждой ячейки шестиугольной сетки, процедура релаксации четырехугольной сетки. This work is devoted to the implementation of an algorithm for procedural generation of an unstructured quadrangular grid, which allows to calculate the grid for a large area in real time. When building the grid, a cubic coordinate system, in which a structured triangular grid is built for each cell of a hexagonal grid, and a relaxation of the quadrangular grid algorithm are used.


2021 ◽  
Author(s):  
Aiko Voigt ◽  
Petra Schwer ◽  
Noam von Rotberg ◽  
Nicole Knopf

Abstract. We present a new method to identify connected components on a triangular grid. Triangular grids are, for example, used in atmosphere and climate models to discretize the horizontal dimension. Because they are unstructured, neighbor relations are not self-evident and identifying connected components is challenging. Our method addresses this challenge by involving the mathematical tool of cubulation. We show that cubulation allows one to map the 2-d cells of the triangular grid onto the vertices of the 3-d cells of a cubic grid. The latter is structured and so connected components can be readily identified on the cubic grid by previously developed software packages. An advantage is that the cubulation, i.e., the mapping between the triangular and cubic grids, needs to be computed only once, which should be benifical for analysing many data fields for the same grid.We further implement our method in a python package that we name TriCCo and that is made available via pypi and gitlab. We document the package, demonstrate its application using cloud data from the ICON atmosphere model, and characterize its computational performance. This shows that TriCCo is ready for triangular grids with 100,000 cells, but that its speed and memory requirements need to be improved to analyse larger grids.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012084
Author(s):  
S A Kislitsyn ◽  
V S Berdnikov

Abstract The crystallization process on a cooled disk located on the free surface of a water layer is studied numerically. The influence of thermal gravitational-capillary and mixed convection on the shape of the crystallization front is investigated. In mixed convection modes, the speed of uniform rotation of the disk is set. The calculations were carried out in an axisymmetric formulation of the problem by the finite element method using an adaptive triangular grid and taking into account the latent heat of crystallization and the inverse dependence of density on temperature.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7816
Author(s):  
Travis Torres ◽  
Nicola Anselmi ◽  
Payam Nayeri ◽  
Paolo Rocca ◽  
Randy Haupt

Sparse arrays have grating lobes in the far field pattern due to the large spacing of elements residing in a rectangular or triangular grid. Random element spacing removes the grating lobes but produces large variations in element density across the aperture. In fact, some areas are so dense that the elements overlap. This paper introduces a low discrepancy sequence (LDS) for generating the element locations in sparse planar arrays without grating lobes. This nonrandom alternative finds an element layout that reduces the grating lobes while keeping the elements far enough apart for practical construction. Our studies consider uniform sparse LDS arrays with 86% less elements than a fully populated array, and numerical results are presented that show these sampling techniques are capable of completely removing the grating lobes of sparse arrays. We present the mathematical formulation for implementing an LDS generated element lattice for sparse planar arrays, and present numerical results on their performance. Multiple array configurations are studied, and we show that these LDS techniques are not impacted by the type/shape of the planar array. Moreover, in comparison between the LDS techniques, we show that the Poisson disk sampling technique outperforms all other approaches and is the recommended LDS technique for sparse arrays.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1489
Author(s):  
Tomasz Hycza ◽  
Agnieszka Kamińska ◽  
Krzysztof Stereńczak

(1) Background: Like many other countries, Poland is obliged to report forest area to the Climate Convention (UNFCCC Kyoto Protocol) and the Food and Agriculture Organization of the United Nations (FAO/UN). Differences between national and international forest definitions lead to differences between actual and reported forest area. Remote sensing is a useful tool for estimating forest area for reporting purposes. One of the most important parts of the estimation is the choice of a basal area to calculate the percentage of vegetation cover. (2) Methods: Height, crown projection area, and minimum complex area were used to classify the area with forest vegetation. Percentage canopy cover was determined using three different methods based on segmentation polygons, triangular grid and canopy height model pixels. The accuracy of the above methods was verified by manual vectorization performed on a selected set of test plots in the Milicz study area according to the international definitions. The differences were examined using three statistical metrics. (3) Conclusions: This paper compares for the first time methods for determining the area for which canopy cover is calculated (using data from (ALS) and discusses the differences between them in the context of accuracy (the correspondence between the results and the reference data) and the complexity of the process (time and effort required to perform the analysis). This is important in the context of reporting, estimating carbon stocks and biodiversity to mitigate the effects of climate change. Method 2 proved to be the most accurate method, Method 1 was found to be the worst option. Accuracy was better in the case of the Kyoto Protocol definition.


2021 ◽  
Author(s):  
Loc H. Khieu ◽  
Maryknoll Dsouza ◽  
Eric Johnsen

2021 ◽  
Author(s):  
Kevin D. Gallagher ◽  
Madhav Mani ◽  
Richard W. Carthew

Pattern formation of biological structures involves the arrangement of different types of cells in an ordered spatial configuration. In this study, we investigate the mechanism of patterning the Drosophila eye into a precise triangular grid of photoreceptor clusters called ommatidia. Previous studies had led to a long-standing biochemical model whereby a reaction-diffusion process is templated by recently formed ommatidia to propagate a molecular prepattern across the eye epithelium. Here, we find that the templating mechanism is instead, mechanical in origin; newly born columns of ommatidia serve as a template to spatially pattern cell flows that move the cells in the epithelium into position to form each new column of ommatidia. Cell flow is generated by a pressure gradient that is caused by a narrow zone of cell dilation precisely positioned behind the growing wavefront of ommatidia. The newly formed lattice grid of ommatidia cells are immobile, deflecting and focusing the flow of other cells. Thus, the self-organization of a regular pattern of cell fates in an epithelium is mechanically driven.


Sign in / Sign up

Export Citation Format

Share Document