computational processes
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 75)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Guilherme Sanches de Oliveira

An intuitive view is that creativity involves bringing together what is already known and familiar in a way that produces something new. In cognitive science, this intuition is typically formalized in terms of computational processes that combine or associate internally represented information. From this computationalist perspective, it is hard to imagine how non-representational approaches in embodied cognitive science could shed light on creativity, especially when it comes to abstract conceptual reasoning of the kind scientists so often engage in. The present article offers an entry point to addressing this challenge. The scientific project of embodied cognitive science is a continuation of work in the functionalist tradition in psychology developed over a century ago by William James and John Dewey, among others. The focus here is on how functionalist views on the nature of mind, thought, and experience offer an alternative starting point for cognitive science in general, and for the cognitive science of scientific creativity in particular. The result may seem paradoxical. On the one hand, the article claims that the functionalist conceptual framework motivates rejecting mainstream cognitive views of creativity as the combination or association of ideas. On the other hand, however, the strategy adopted here—namely, revisiting ideas from functionalist psychology to inform current scientific theorizing—can itself be described as a process of arriving at new, creative ideas from combinations of old ones. As is shown here, a proper understanding of cognition in light of the functionalist tradition resolves the seeming tension between these two claims.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Muhammad Umar Farooq ◽  
Rukhshanda Anjum ◽  
Abdul Gaffar ◽  
Huma Bashir ◽  
Naziha Al-Aidroos ◽  
...  

Neutrosophic set (NS) is an extensively used framework whenever the imprecision and uncertainty of an event is described based on three possible aspects. The association, neutral, and nonassociation degrees are the three unique aspects of an NS. More importantly, these degrees are independent which is a great plus point. On the contrary, neutrosophic graphs (NGs) and single-valued NGs (SVNGs) are applicable to deal with events that contain bulks of information. However, the concept of degrees in NGs is a handful tool for solving the problems of decision-making (DM), pattern recognition, social network, and communication network. This manuscript develops various forms of edge irregular SVNG (EISVNG), highly edge irregular SVNG (HEISVNG), strongly (EISVNG), strongly (ETISVNG), and edge irregularity on a cycle and a path in SVNGs. All these novel notions are supported by definitions, theorems, mathematical proofs, and illustrative examples. Moreover, two types of DM problems are modelled using the proposed framework. Furthermore, the computational processes are used to confirm the validity of the proposed graphs. Furthermore, the results approve that the decision-making problems can be addressed by the edge irregular neutrosophic graphical structures. In addition, the comparison between proposed and the existing methodologies is carried out.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Sheeba Samuel ◽  
Birgitta König-Ries

Abstract Background The advancement of science and technologies play an immense role in the way scientific experiments are being conducted. Understanding how experiments are performed and how results are derived has become significantly more complex with the recent explosive growth of heterogeneous research data and methods. Therefore, it is important that the provenance of results is tracked, described, and managed throughout the research lifecycle starting from the beginning of an experiment to its end to ensure reproducibility of results described in publications. However, there is a lack of interoperable representation of end-to-end provenance of scientific experiments that interlinks data, processing steps, and results from an experiment’s computational and non-computational processes. Results We present the “REPRODUCE-ME” data model and ontology to describe the end-to-end provenance of scientific experiments by extending existing standards in the semantic web. The ontology brings together different aspects of the provenance of scientific studies by interlinking non-computational data and steps with computational data and steps to achieve understandability and reproducibility. We explain the important classes and properties of the ontology and how they are mapped to existing ontologies like PROV-O and P-Plan. The ontology is evaluated by answering competency questions over the knowledge base of scientific experiments consisting of computational and non-computational data and steps. Conclusion We have designed and developed an interoperable way to represent the complete path of a scientific experiment consisting of computational and non-computational steps. We have applied and evaluated our approach to a set of scientific experiments in different subject domains like computational science, biological imaging, and microscopy.


2022 ◽  
pp. 83-109
Author(s):  
K. S. Sastry Musti ◽  
Marcio Van der Merwe

Application of multi-criteria decision analysis (MCDA) methods to various aspects of energy systems is of significant interest. This chapter first proposes a simple yet user-friendly MS-Excel tool with four popular MCDA methods. The tool can be effectively used to apply MCDA techniques and to determine the rankings for the alternatives. This MS-Excel tool is made available on Mendeley data repository. The chapter explains the overall MCDA computational processes, algorithms, and provides details on using the tool itself with the help of two case studies to demonstrate its effectiveness and applicability.


2021 ◽  
Author(s):  
Zoe M Boundy-Singer ◽  
Corey M Ziemba ◽  
Robbe LT Goris

Decisions vary in difficulty. Humans know this and typically report more confidence in easy than in difficult decisions. However, confidence reports do not perfectly track decision accuracy, but also reflect response biases and difficulty misjudgments. To isolate the quality of confidence reports, we developed a model of the decision-making process underlying choice-confidence data. In this model, confidence reflects a subject's estimate of the reliability of their decision. The quality of this estimate is limited by the subject's uncertainty about the uncertainty of the variable that informs their decision ("meta-uncertainty"). This model provides an accurate account of choice-confidence data across a broad range of perceptual and cognitive tasks, revealing that meta-uncertainty varies across subjects, is stable over time, generalizes across some domains, and can be manipulated experimentally. The model offers a parsimonious explanation for the computational processes that underlie and constrain the sense of confidence.


2021 ◽  
Author(s):  
◽  
Liam Gilbertson

<p>This research developed a fully-integrated robotic printing system, using new methods of additive manufacture (AM) that enables users to explore spatially printed structures with increased freedom of geometric complexity.  Current AM technologies, such as Fusion Deposition Modelling (FDM), can rapidly translate design ideations into solid forms by precisely depositing consecutive layers of material in coordination with the movements of a robotic platform. Using this method, solid objects are digitally deconstructed into linear toolpaths and physically reconstituted with thermoplastic extrusion equipment; the toolpath becomes the form.  Spatial printing, using methods such as those demonstrated in this research, offers a new way of building 3D forms. By harnessing the potential of FDM equipment and materials for generating self-supporting structures, the user can create complex free-standing structures unshackled from the layered constraints of typical additive manufacturing processes. Here, the user acts as an informed negotiator between digital form and physical manifestation where movement realises form.  A complete spatial printing system was built that harnesses the complexity of robotic movements and responds to the needs of printing materials through a feedback loop that draws from the results of experimentation. Bespoke printing equipment and computational processes strive to improve the craft qualities and printability of input materials with a specific focus on compatibility with co-extrusion biopolymer filaments developed by Scion. This thesis illustrates the development of a versatile spatial printing system and subsequent investigations into the craft qualities and freedom of complexity that this system offers to designers and architects.</p>


2021 ◽  
Author(s):  
◽  
Liam Gilbertson

<p>This research developed a fully-integrated robotic printing system, using new methods of additive manufacture (AM) that enables users to explore spatially printed structures with increased freedom of geometric complexity.  Current AM technologies, such as Fusion Deposition Modelling (FDM), can rapidly translate design ideations into solid forms by precisely depositing consecutive layers of material in coordination with the movements of a robotic platform. Using this method, solid objects are digitally deconstructed into linear toolpaths and physically reconstituted with thermoplastic extrusion equipment; the toolpath becomes the form.  Spatial printing, using methods such as those demonstrated in this research, offers a new way of building 3D forms. By harnessing the potential of FDM equipment and materials for generating self-supporting structures, the user can create complex free-standing structures unshackled from the layered constraints of typical additive manufacturing processes. Here, the user acts as an informed negotiator between digital form and physical manifestation where movement realises form.  A complete spatial printing system was built that harnesses the complexity of robotic movements and responds to the needs of printing materials through a feedback loop that draws from the results of experimentation. Bespoke printing equipment and computational processes strive to improve the craft qualities and printability of input materials with a specific focus on compatibility with co-extrusion biopolymer filaments developed by Scion. This thesis illustrates the development of a versatile spatial printing system and subsequent investigations into the craft qualities and freedom of complexity that this system offers to designers and architects.</p>


2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>


2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>


2021 ◽  
Author(s):  
Thomas Wynn ◽  
Karenleigh A. Overmann ◽  
Lambros Malafouris

This essay introduces a special issue focused on 4E cognition (cognition as embodied, embedded, enactive, and extended) in the Lower Palaeolithic. In it, we review the typological and representational cognitive approaches that have dominated the past 50 years of paleoanthropology. These have assumed that all representations and computations take place only inside the head, which implies that the archaeological record can only be an ‘‘external’’ product or the behavioral trace of ‘‘internal’’ representational and computational processes. In comparison, the 4E approach helps us to overcome this dualist representational logic, allowing us to engage directly with the archaeological record as an integral part of the thinking process, and thus ground a more parsimonious cognitive archaeology. It also treats stone tools, the primary vestiges of hominin thinking, as active participants in mental life. The 4E approach offers a better grounding for understanding hominin technical expertise, a crucially important component of hominin cognitive evolution.


Sign in / Sign up

Export Citation Format

Share Document