Hybrid Algorithms for the Variable Sized Bin Packing Problem

Author(s):  
Christian Blum ◽  
Vera Hemmelmayr ◽  
Hugo Hernández ◽  
Verena Schmid
2010 ◽  
Vol 10 (1/2/3) ◽  
pp. 217 ◽  
Author(s):  
Abdelghani Bekrar ◽  
Imed Kacem ◽  
Chengbin Chu ◽  
Cherif Sadfi

1994 ◽  
Vol 03 (01) ◽  
pp. 47-60
Author(s):  
R.A. McCONNELL ◽  
B.L. MENEZES

This article compares three techniques for allocating tasks in a mesh-based multi-computer. Tasks are expressed as rectangles of a certain width and height corresponding to the topology of processors desired. The task allocation problem, is thus a variant of the bin-packing problem, with one major difference: in the bin-packing problem one seeks to minimize the height of the bin, while here we seek to maximize the utilization of processors in a multicomputer. The three techniques compared are a classical level-by-level algorithm, a connectionist simulated annealing variant of the Hopfield network, and a genetic algorithm. An extension to the dynamic processor allocation problem is modeled by fixing some rectangles in place and packing the request rectangles in the residual space on the mesh; this corresponds to a pre-existing condition, i.e., some tasks have already been allocated to the Processor Mesh. Implementation and experimental results are presented.


2007 ◽  
Vol 35 (3) ◽  
pp. 365-373 ◽  
Author(s):  
François Clautiaux ◽  
Antoine Jouglet ◽  
Joseph El Hayek

Sign in / Sign up

Export Citation Format

Share Document