Induced Massive Star Formation in Dense Molecular Clouds Cometary Globules in HII Regions

Author(s):  
B. Lefloch ◽  
J. Cernicharo ◽  
L. Deharveng ◽  
A. Zavagno
1986 ◽  
Vol 116 ◽  
pp. 301-315
Author(s):  
Joseph Silk

The gravitational fragmentation theory of star formation is reviewed. Theoretical arguments are presented which suggest that the lower stellar mass cut-off to the IMF in giant HII regions may be as high as 10 M⊙. Mechanisms for bimodal star formation are described in the context of a coagulation model for formation of the giant molecular clouds, and application is made to starbursting galaxies.


2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.


2019 ◽  
Vol 488 (2) ◽  
pp. 2970-2975 ◽  
Author(s):  
Michael Y Grudić ◽  
Philip F Hopkins

Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.


Nature ◽  
2002 ◽  
Vol 416 (6876) ◽  
pp. 59-61 ◽  
Author(s):  
Christopher F. McKee ◽  
Jonathan C. Tan

Author(s):  
Sally Oey ◽  
Joel B. Lamb

AbstractThere is growing evidence that massive stars sometimes form in extremely sparse environments. The RIOTS4 survey presents a variety of evidence supporting this scenario, including a sample of 14 OB stars in the Small Magellanic Cloud (SMC) that appear to have formed in situ as field stars. This is based on the presence of dense, symmetric HII regions hosting apparent non-runaway stars. We also present a spatially complete IMF of SMC field OB stars for masses > 7 M⊙, showing that the slope is much steeper than the Salpeter value. The binary fraction among field OB stars is also the same as in clusters, based on a RIOTS4 subsample. These results suggest a relative, but incomplete, suppression of massive star formation in the sparsest regimes.


Author(s):  
Shinji Fujita ◽  
Kazufumi Torii ◽  
Nario Kuno ◽  
Atsushi Nishimura ◽  
Tomofumi Umemoto ◽  
...  

Abstract W$\, 51\,$A is one of the most active star-forming regions in the Milky Way, and includes copious amounts of molecular gas with a total mass of ${\sim }6\times 10^{5}\, M_{\odot }$. The molecular gas has multiple velocity components over ∼20 km s−1, and interactions between these components have been discussed as the mechanism that triggered the massive star formation in W$\, 51\,$A. In this paper, we report on an observational study of the molecular gas in W$\, 51\,$A using the new 12CO, 13CO, and C18O (J = 1–0) data covering a 1${^{\circ}_{.}}$4 × 1${^{\circ}_{.}}$0 area of W$\, 51\,$A obtained with the Nobeyama 45 m telescope at 20′ resolution. Our CO data resolved four discrete velocity clouds with sizes and masses of ∼30 pc and 1.0–$1.9\times 10^{5}\, M_{\odot }$ around radial velocities of 50, 56, 60, and 68 km s−1. Toward the central part of the Hii region complex G49.5−0.4 in W$\, 51\,$A, in which the bright stellar clusters IRS 1 and IRS 2 are located, we identified four C18O clumps having sizes of ∼1 pc and column densities of higher than 1023 cm−2, which are each embedded within the four velocity clouds. These four clumps are concentrated within a small area of 5 pc, but show a complementary distribution on the sky. In the position–velocity diagram, these clumps are connected with each other by bridge features having weak intensities. The high intensity ratios of 13CO (J = 3–2)$/$(J = 1–0) also indicate that these four clouds are associated with the Hii regions, including IRS 1 and IRS 2. We also reveal that, in the other bright Hii region complex G49.4−0.3, the 50, 60, and 68 km s−1 clouds show a complementary distribution, with two bridge features connecting between the 50 and 60 km s−1 clouds and the 60 and 68 km s−1 clouds. An isolated compact Hii region G49.57−0.27 located ∼15 pc north of G49.5−0.4 also shows a complementary distribution and a bridge feature. The complementary distribution on the sky and the broad bridge feature in the position–velocity diagram suggest collisional interactions among the four velocity clouds in W$\, 51\,$A. The timescales of the collisions can be estimated to be several 0.1 Myr as crossing times of the collisions, which are consistent with the ages of the Hii regions measured from the sizes of the Hii regions with the 21 cm continuum data. We discuss a scenario of cloud–cloud collisions and massive star formation in W$\, 51\,$A by comparing these with recent observational and theoretical studies of cloud–cloud collision.


2014 ◽  
Vol 212 (1) ◽  
pp. 2 ◽  
Author(s):  
P. García ◽  
L. Bronfman ◽  
Lars-Åke Nyman ◽  
T. M. Dame ◽  
A. Luna

Sign in / Sign up

Export Citation Format

Share Document