scholarly journals Massive Star Formation in the Sparsest Environments

Author(s):  
Sally Oey ◽  
Joel B. Lamb

AbstractThere is growing evidence that massive stars sometimes form in extremely sparse environments. The RIOTS4 survey presents a variety of evidence supporting this scenario, including a sample of 14 OB stars in the Small Magellanic Cloud (SMC) that appear to have formed in situ as field stars. This is based on the presence of dense, symmetric HII regions hosting apparent non-runaway stars. We also present a spatially complete IMF of SMC field OB stars for masses > 7 M⊙, showing that the slope is much steeper than the Salpeter value. The binary fraction among field OB stars is also the same as in clusters, based on a RIOTS4 subsample. These results suggest a relative, but incomplete, suppression of massive star formation in the sparsest regimes.

2018 ◽  
Vol 483 (4) ◽  
pp. 4893-4900 ◽  
Author(s):  
Nathaniel Dylan Kee ◽  
Rolf Kuiper

Abstract Radiative feedback from luminous, massive stars during their formation is a key process in moderating accretion on to the stellar object. In the prior papers in this series, we showed that one form such feedback takes is UV line-driven disc ablation. Extending on this study, we now constrain the strength of this effect in the parameter range of star and disc properties appropriate to forming massive stars. Simulations show that ablation rate depends strongly on stellar parameters, but that this dependence can be parameterized as a nearly constant, fixed enhancement over the wind mass-loss rate, allowing us to predict the rate of disc ablation for massive (proto)stars as a function of stellar mass and metallicity. By comparing this to predicted accretion rates, we conclude that ablation is a strong feedback effect for very massive (proto)stars which should be considered in future studies of massive star formation.


1991 ◽  
Vol 148 ◽  
pp. 139-144 ◽  
Author(s):  
Robert C. Kennicutt

The H II regions in the Magellanic Clouds provide an opportunity to characterize the global star formation properties of a galaxy at close range. They also provide a unique laboratory for testing empirical tracers of the massive star formation rates and initial mass functions in more distant galaxies, and for studying the dynamical interactions between massive stars and the interstellar medium. This paper discusses several current studies in these areas.


2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.


1986 ◽  
Vol 116 ◽  
pp. 523-528
Author(s):  
J. A. Graham ◽  
Taft E. Armandroff

Highlights of the IAU Symposium 116 are reviewed. Some of the general themes running through the meeting are identified. These include:i) the fruitful interaction between observation, laboratory work and theory. ii) the need for understanding and, if possible, correcting for the effects of incompleteness and bias in observing lists. iii) the importance of the Magellanic Clouds, as the nearest independently evolving stellar systems, in the study of massive star formation and evolution in galaxies.


2017 ◽  
Vol 12 (S330) ◽  
pp. 341-342
Author(s):  
Delphine Russeil

AbstractThe star forming regions NGC6334 and NGC6357 are amid the most active star-forming complexes of our Galaxy where massive star formation is occuring. Both complexes gather several HII regions but they exhibit different aspects: NGC6334 is characterised by a dense molecular ridge where recent massive star formation is obvious while NGC6357 is dominated by the action of the stellar cluster Pismis 24 which have shaped a large cavity. To understand and compare the formation of massive stars in these two regions requires to precise the distance and characterise the proper motions of the O to B3 stellar population in these regions.


2018 ◽  
Vol 615 ◽  
pp. A40 ◽  
Author(s):  
V. Ramachandran ◽  
W.-R. Hamann ◽  
R. Hainich ◽  
L. M. Oskinova ◽  
T. Shenar ◽  
...  

Context. Clusters or associations of early-type stars are often associated with a “superbubble” of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N 206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N 206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Methods. We observed the massive stars in the N 206 complex using the multi-object spectrograph FLAMES at ESO’s Very Large Telescope (VLT). Available ultra-violet (UV) spectra from archives are also used. The spectral analysis is performed with Potsdam Wolf–Rayet (PoWR) model atmospheres by reproducing the observations with the synthetic spectra. Results. We present the stellar and wind parameters of the OB stars and the two Wolf–Rayet (WR) binaries in the N 206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung–Russell diagram (HRD) of the OB stars reveals a large age spread (1–30 Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N 206 complex as well as for the cluster NGC 2018. The total ionizing photon flux produced by all massive stars in the N 206 complex is Q0 ≈ 5 × 1050 s−1, and the mechanical luminosity of their stellar winds amounts to Lmec = 1.7 × 1038 erg s−1. Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is ≈ 2.3 × 1052 erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30 Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2 × 10−3 M⊙ yr−1. From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble.


2016 ◽  
Vol 12 (S329) ◽  
pp. 110-117 ◽  
Author(s):  
Hugues Sana

AbstractMassive stars like company. Here, we provide a brief overview of progresses made over the last 5 years by a number of medium and large surveys. These results provide new insights on the observed and intrinsic multiplicity properties of main sequence massive stars and on the initial conditions for their future evolution. They also bring new interesting constraints on the outcome of the massive star formation process.


2018 ◽  
Vol 618 ◽  
pp. A73 ◽  
Author(s):  
F. R. N. Schneider ◽  
O. H. Ramírez-Agudelo ◽  
F. Tramper ◽  
J. M. Bestenlehner ◽  
N. Castro ◽  
...  

The 30 Doradus (30 Dor) nebula in the Large Magellanic Cloud (LMC) is the brightest HII region in the Local Group and a prototype starburst similar to those found in high redshift galaxies. It is thus a stepping stone to understand the complex formation processes of stars in starburst regions across the Universe. Here, we have studied the formation history of massive stars in 30 Dor using masses and ages derived for 452 mainly OB stars from the spectroscopic VLT-FLAMES Tarantula Survey (VFTS). We find that stars of all ages and masses are scattered throughout 30 Dor. This is remarkable because it implies that massive stars either moved large distances or formed independently over the whole field of view in relative isolation. We find that both channels contribute to the 30 Dor massive star population. Massive star formation rapidly accelerated about 8 Myr ago, first forming stars in the field before giving birth to the stellar populations in NGC 2060 and NGC 2070. The R136 star cluster in NGC 2070 formed last and, since then, about 1 Myr ago, star formation seems to be diminished with some continuing in the surroundings of R136. Massive stars within a projected distance of 8 pc of R136 are not coeval but show an age range of up to 6 Myr. Our mass distributions are well populated up to 200 M⊙. The inferred IMF is shallower than a Salpeter-like IMF and appears to be the same across 30 Dor. By comparing our sample of stars to stellar models in the Hertzsprung–Russell diagram, we find evidence for missing physics in the models above log L/L⊙ = 6 that is likely connected to enhanced wind mass loss for stars approaching the Eddington limit. Our work highlights the key information about the formation, evolution and final fates of massive stars encapsulated in the stellar content of 30 Dor, and sets a new benchmark for theories of massive star formation in giant molecular clouds.


Sign in / Sign up

Export Citation Format

Share Document