Statistical Approximation to Periodic Functions by a General Family of Linear Operators

Author(s):  
George A. Anastassiou ◽  
Oktay Duman
2010 ◽  
Vol 47 (3) ◽  
pp. 321-332
Author(s):  
Fadime Dirik ◽  
Kamil Demirci

In this study, using the concept of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence for sequence of infinite matrices \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document} = (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i ) with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}i = ( bnk ( i )) we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on C * which is the space of all 2π-periodic and continuous functions on ℝ, the set of all real numbers. Also we study the rates of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathfrak{B}$$ \end{document}-statistical convergence of approximating positive linear operators.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abdullah Alotaibi ◽  
M. Mursaleen ◽  
S. A. Mohiuddine

We prove a Korovkin type approximation theorem for a function of two variables by using the notion of statistical summability(C,1,1). We also study the rate of statistical summability(C,1,1)of positive linear operators. Finally we construct an example to show that our result is stronger than those previously proved for Pringsheim's convergence and statistical convergence.


2010 ◽  
Vol 47 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Fadime Dirik ◽  
Oktay Duman ◽  
Kamil Demirci

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Joachim Toft

AbstractWe characterize Gelfand–Shilov spaces, their distribution spaces and modulation spaces in terms of estimates of their Zak transforms. We use these results for general investigations of quasi-periodic functions and distributions. We also establish necessary and sufficient conditions for linear operators in order for these operators should be conjugations by Zak transforms.


Author(s):  
Walter R. Bloom ◽  
Joseph F. Sussich

AbstractIn 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limn→rTnf = f uniformly for all f∈C. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G.


Author(s):  
Walter R. Bloom ◽  
Joseph F. Sussich

AbstractIn 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2 π-periodic functions and lim Tnf = f uniformly for f = 1, cos and sin, then lim Tnf = f uniformly for all f ∈ C. Quantitative versions of this result have been given, where the rate of convergence is given in terms of that of the test functions 1, cos and sin, and the modulus of continuity of f. We extend this result by giving a quantitative version of Korovkin's theorem for compact connected abelian groups.


Sign in / Sign up

Export Citation Format

Share Document