Genetic Dynamic Fuzzy Neural Network (GDFNN) for Nonlinear System Identification

Author(s):  
Mahardhika Pratama ◽  
Meng Joo Er ◽  
Xiang Li ◽  
Lin San ◽  
J. O. Richard ◽  
...  
2021 ◽  
Vol 28 (2) ◽  
pp. 111-123

Nonlinear system identification (NSI) is of great significance to modern scientific engineering and control engineering. Despite their identification ability, the existing analysis methods for nonlinear systems have several limitations. The neural network (NN) can overcome some of these limitations in NSI, but fail to achieve desirable accuracy or training speed. This paper puts forward an NSI method based on adaptive NN, with the aim to further improve the convergence speed and accuracy of NN-based NSI. Specifically, a generic model-based nonlinear system identifier was constructed, which integrates the error feedback and correction of predictive control with the generic model theory. Next, the radial basis function (RBF) NN was optimized by adaptive particle swarm optimization (PSO), and used to build an NSI model. The effectiveness and speed of our model were verified through experiments. The research results provide a reference for applying the adaptive PSO-optimized RBFNN in other fields.


Author(s):  
Tsung-Chih Lin ◽  
Yi-Ming Chang ◽  
Tun-Yuan Lee

This paper proposes a novel fuzzy modeling approach for identification of dynamic systems. A fuzzy model, recurrent interval type-2 fuzzy neural network (RIT2FNN), is constructed by using a recurrent neural network which recurrent weights, mean and standard deviation of the membership functions are updated. The complete back propagation (BP) algorithm tuning equations used to tune the antecedent and consequent parameters for the interval type-2 fuzzy neural networks (IT2FNNs) are developed to handle the training data corrupted by noise or rule uncertainties for nonlinear system identification involving external disturbances. Only by using the current inputs and most recent outputs of the input layers, the system can be completely identified based on RIT2FNNs. In order to show that the interval IT2FNNs can handle the measurement uncertainties, training data are corrupted by white Gaussian noise with signal-to-noise ratio (SNR) 20 dB. Simulation results are obtained for the identification of nonlinear system, which yield more improved performance than those using recurrent type-1 fuzzy neural networks (RT1FNNs).


Sign in / Sign up

Export Citation Format

Share Document