online clustering
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tiantian Zhang ◽  
Xueqian Wang ◽  
Bin Liang ◽  
Bo Yuan

The powerful learning ability of deep neural networks enables reinforcement learning (RL) agents to learn competent control policies directly from high-dimensional and continuous environments. In theory, to achieve stable performance, neural networks assume i.i.d. inputs, which unfortunately does no hold in the general RL paradigm where the training data is temporally correlated and non-stationary. This issue may lead to the phenomenon of "catastrophic interference" (a.k.a. "catastrophic forgetting") and the collapse in performance as later training is likely to overwrite and interfer with previously learned good policies. In this paper, we introduce the concept of "context" into the single-task RL and develop a novel scheme, termed as Context Division and Knowledge Distillation (CDaKD) driven RL, to divide all states experienced during training into a series of contexts. Its motivation is to mitigate the challenge of aforementioned catastrophic interference in deep RL, thereby improving the stability and plasticity of RL models. At the heart of CDaKD is a value function, parameterized by a neural network feature extractor shared across all contexts, and a set of output heads, each specializing on an individual context. In CDaKD, we exploit online clustering to achieve context division, and interference is further alleviated by a knowledge distillation regularization term on the output layers for learned contexts. In addition, to effectively obtain the context division in high-dimensional state spaces (e.g., image inputs), we perform clustering in the lower-dimensional representation space of a randomly initialized convolutional encoder, which is fixed throughout training. Our results show that, with various replay memory capacities, CDaKD can consistently improve the performance of existing RL algorithms on classic OpenAI Gym tasks and the more complex high-dimensional Atari tasks, incurring only moderate computational overhead.


2021 ◽  
Author(s):  
Tiantian Zhang ◽  
Xueqian Wang ◽  
Bin Liang ◽  
Bo Yuan

The powerful learning ability of deep neural networks enables reinforcement learning (RL) agents to learn competent control policies directly from high-dimensional and continuous environments. In theory, to achieve stable performance, neural networks assume i.i.d. inputs, which unfortunately does no hold in the general RL paradigm where the training data is temporally correlated and non-stationary. This issue may lead to the phenomenon of "catastrophic interference" (a.k.a. "catastrophic forgetting") and the collapse in performance as later training is likely to overwrite and interfer with previously learned good policies. In this paper, we introduce the concept of "context" into the single-task RL and develop a novel scheme, termed as Context Division and Knowledge Distillation (CDaKD) driven RL, to divide all states experienced during training into a series of contexts. Its motivation is to mitigate the challenge of aforementioned catastrophic interference in deep RL, thereby improving the stability and plasticity of RL models. At the heart of CDaKD is a value function, parameterized by a neural network feature extractor shared across all contexts, and a set of output heads, each specializing on an individual context. In CDaKD, we exploit online clustering to achieve context division, and interference is further alleviated by a knowledge distillation regularization term on the output layers for learned contexts. In addition, to effectively obtain the context division in high-dimensional state spaces (e.g., image inputs), we perform clustering in the lower-dimensional representation space of a randomly initialized convolutional encoder, which is fixed throughout training. Our results show that, with various replay memory capacities, CDaKD can consistently improve the performance of existing RL algorithms on classic OpenAI Gym tasks and the more complex high-dimensional Atari tasks, incurring only moderate computational overhead.


Author(s):  
James Smith ◽  
Cameron Taylor ◽  
Seth Baer ◽  
Constantine Dovrolis

We first pose the Unsupervised Progressive Learning (UPL) problem: an online representation learning problem in which the learner observes a non-stationary and unlabeled data stream, learning a growing number of features that persist over time even though the data is not stored or replayed. To solve the UPL problem we propose the Self-Taught Associative Memory (STAM) architecture. Layered hierarchies of STAM modules learn based on a combination of online clustering, novelty detection, forgetting outliers, and storing only prototypical features rather than specific examples. We evaluate STAM representations using clustering and classification tasks. While there are no existing learning scenarios that are directly comparable to UPL, we compare the STAM architecture with two recent continual learning models, Memory Aware Synapses (MAS) and Gradient Episodic Memories (GEM), after adapting them in the UPL setting.


Author(s):  
Renato Vertuam Neto ◽  
Gabriel Tavares ◽  
Paolo Ceravolo ◽  
Sylvio Barbon

2021 ◽  
Vol 13 (2) ◽  
pp. 45-61
Author(s):  
Yinglian Zhou ◽  
Jifeng Chen

The rapid development of internet of things (IoT) and in-stream big data processing technology has brought new opportunities for the research of intelligent transportation systems. Traffic forecasting has always been a key issue in the smart transportation system. Aiming at the problem that a fixed model cannot adapt to multiple environments in traffic flow prediction and the problem of model updating for data flow, a traffic flow prediction method is proposed based on variable structure dynamic Bayesian network. Based on the complex event processing and event context, this method divides historical data through context clustering and supports cluster update through online clustering of event streams. For different clustered data, a search-scoring method is used to learn the corresponding Bayesian network structure, and a Bayesian network is approximated based on a Gaussian mixture model. When forecasting online, a suitable model or combination of models is selected according to the current context for prediction.


Sign in / Sign up

Export Citation Format

Share Document