scholarly journals Clustering of Trajectories in Video Surveillance Using Growing Neural Gas

Author(s):  
Javier Acevedo-Rodríguez ◽  
Saturnino Maldonado-Bascón ◽  
Roberto López-Sastre ◽  
Pedro Gil-Jiménez ◽  
Antonio Fernández-Caballero
Author(s):  
Miguel A. Molina-Cabello ◽  
Rafael Marcos Luque-Baena ◽  
Ezequiel López-Rubio ◽  
Juan Miguel Ortiz-de-Lazcano-Lobato ◽  
Enrique Domínguez

Automated video surveillance presents a great amount of applications and one of them is traffic monitoring. Vehicle type detection can provide information about the characteristics of the traffic flow to human traffic controllers in order to facilitate their decision-making process. A video surveillance system is proposed in this work to execute such classification. First of all, a foreground detection and tracking object process has been carried out. Once the vehicles are detected, a feature extraction method obtains the most significant features of this detected vehicles. When the extraction process is done, the vehicle types are determined by employing a set of Growing Neural Gas neural networks. The performance of the proposal has been analyzed from a qualitative and quantitative point of view by using a set of benchmark traffic video sequences, with acceptable results.


2014 ◽  
Vol 24 (3) ◽  
pp. 651-662
Author(s):  
Feng ZENG ◽  
Tong YANG ◽  
Shan YAO

Author(s):  
Lukáš Vojáček ◽  
Pavla Dráždilová ◽  
Jiří Dvorský

Author(s):  
Yuichiro Toda ◽  
Zhaojie Ju ◽  
Hui Yu ◽  
Naoyuki Takesue ◽  
Kazuyoshi Wada ◽  
...  

Author(s):  
Wiesław Golka ◽  
Edward Arseniuk ◽  
Adrian Golka ◽  
Tomasz Góral

Celem prac badawczych było wykorzystanie teledetekcji oraz sztucznych sieci neuronowych w ocenie pszenicy jarej pod względem reakcji na fuzariozę kłosów wywoływaną przez grzyby z rodzaju Fusarium spp. Prace badawcze wykonano na roślinach 4 odmian pszenicy jarej. Były to: KWS Torridon i Izera – o wyższej odporności, Radocha i Nawra – o odporności niższej na ww. patogena. Wykonano zdjęcia zdrowych oraz porażonych kłosów wszystkich odmian, które następnie przetworzono przy użyciu programu Crops Vegetation Control Lab (CVC Lab.). Na podstawie uzyskanych obrazów utworzono ich reprezentacje w postaci sieci neuronowych Growing Neural Gas (GNG). W wyniku analizy zdjęć uzyskano 240 wzorców, z których wybrano po 6 bazowych wzorców choroby dla każdej odmiany. Następnie dokonano porównania próbek porażonych kłosów danej odmiany z bazowymi wzorcami chorobowymi tej samej odmiany pszenicy. W wyniku porównania wzorców roślin zdrowych i porażonych ze zdjęciami poletek roślin zdrowych i porażonych uzyskano zróżnicowanie wartości liczbowych dającej podstawę do konstrukcji mapy zdrowotności plantacji pszenicy z wyszczególnieniem ognisk choroby.


Author(s):  
J. Garcia-Rodriguez ◽  
A. Angelopoulou ◽  
J.M. Garcia-Chamizo ◽  
A. Psarrou ◽  
S. Orts-Escolano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document