Multiple Levels of Abstraction Modelling for Service-Oriented Distributed Embedded Real-Time Software Design

Author(s):  
Muhammad Waqar Aziz ◽  
Radziah Mohamad ◽  
Dayang N. A. Jawawi
2007 ◽  
Author(s):  
Amy Perfors ◽  
Charles Kemp ◽  
Elizabeth Wonnacott ◽  
Joshua B. Tenenbaum

1992 ◽  
Vol 25 (25) ◽  
pp. 263-265
Author(s):  
B.R. Andrievsky ◽  
A.A. Vasiljev ◽  
V.N. Utkin

2014 ◽  
Vol 22 (1) ◽  
pp. 159-188 ◽  
Author(s):  
Mikdam Turkey ◽  
Riccardo Poli

Several previous studies have focused on modelling and analysing the collective dynamic behaviour of population-based algorithms. However, an empirical approach for identifying and characterising such a behaviour is surprisingly lacking. In this paper, we present a new model to capture this collective behaviour, and to extract and quantify features associated with it. The proposed model studies the topological distribution of an algorithm's activity from both a genotypic and a phenotypic perspective, and represents population dynamics using multiple levels of abstraction. The model can have different instantiations. Here it has been implemented using a modified version of self-organising maps. These are used to represent and track the population motion in the fitness landscape as the algorithm operates on solving a problem. Based on this model, we developed a set of features that characterise the population's collective dynamic behaviour. By analysing them and revealing their dependency on fitness distributions, we were then able to define an indicator of the exploitation behaviour of an algorithm. This is an entropy-based measure that assesses the dependency on fitness distributions of different features of population dynamics. To test the proposed measures, evolutionary algorithms with different crossover operators, selection pressure levels and population handling techniques have been examined, which lead populations to exhibit a wide range of exploitation-exploration behaviours.


1993 ◽  
Vol 4 (3) ◽  
pp. 205-218
Author(s):  
Yu. A. Belov ◽  
V. S. Protsenko ◽  
V. V. Fedorov ◽  
A. A. Khizhnyak

2012 ◽  
Vol 182-183 ◽  
pp. 753-757
Author(s):  
Xing Ming Xiao ◽  
Na Ma

According to the working principle of load monitored oil pressure, in order to real-time monitor the actual load of auxiliary shift, and make the execution of alarming on the malfunctions in the working state of the equipment concerned, we designed a monitor system of auxiliary shift based on Labview[1]. This system can provide guarantee of the safety lifting. So the formation, design principle, hardware and software design well be introduced in this article.


Sign in / Sign up

Export Citation Format

Share Document