Design of Cryptographic Devices Resilient to Fault Injection Attacks Using Nonlinear Robust Codes

Author(s):  
Kahraman D. Akdemir ◽  
Zhen Wang ◽  
Mark Karpovsky ◽  
Berk Sunar
10.29007/r2sc ◽  
2019 ◽  
Author(s):  
Osnat Keren ◽  
Ilia Polian

Cryptographic hardware primitives must be protected against fault-injection attacks. Security-oriented error-detecting codes provide (probabilistic) guarantees for detection of maliciously injected faults even under assumption of a sophisticated attacker with access to powerful equipment.In this paper, we revisit the earlier finding that error-detection infrastructure may increase the undesired information leakage. We formalize the information leakage from the checker response by means of mutual information. We apply our analysis to the best security-oriented robust codes known today. We prove that the probability of an undetected attack is exponentially smaller than the entropy loss due to information leak from the checker. This means that an attack will be detected far before the attacker will gain significant information. Given a bound for acceptable information leakage (e.g., 0.5 bits of a 128-bit secret key), our analysis allows the designer to easily choose the number of redundant bits required to stay below that bound. The obtained results extend our knowledge about the relationship between detection capabilities of codes and information leakage due to them.


Author(s):  
Henitsoa Rakotomalala ◽  
Xuan Thuy Ngo ◽  
Zakaria Najm ◽  
Jean-Luc Danger ◽  
Sylvain Guilley

2021 ◽  
Author(s):  
Yukui Luo ◽  
Cheng Gongye ◽  
Yunsi Fei ◽  
Xiaolin Xu

2011 ◽  
Vol 1 (4) ◽  
pp. 265-270 ◽  
Author(s):  
Sho Endo ◽  
Takeshi Sugawara ◽  
Naofumi Homma ◽  
Takafumi Aoki ◽  
Akashi Satoh

Sign in / Sign up

Export Citation Format

Share Document