Secure memories resistant to both random errors and fault injection attacks using nonlinear error correction codes

Author(s):  
Shizun Ge ◽  
Zhen Wang ◽  
Pei Luo ◽  
Mark Karpovsky
Author(s):  
Henitsoa Rakotomalala ◽  
Xuan Thuy Ngo ◽  
Zakaria Najm ◽  
Jean-Luc Danger ◽  
Sylvain Guilley

2011 ◽  
Vol 1 (4) ◽  
pp. 265-270 ◽  
Author(s):  
Sho Endo ◽  
Takeshi Sugawara ◽  
Naofumi Homma ◽  
Takafumi Aoki ◽  
Akashi Satoh

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2074
Author(s):  
J.-Carlos Baraza-Calvo ◽  
Joaquín Gracia-Morán ◽  
Luis-J. Saiz-Adalid ◽  
Daniel Gil-Tomás ◽  
Pedro-J. Gil-Vicente

Due to transistor shrinking, intermittent faults are a major concern in current digital systems. This work presents an adaptive fault tolerance mechanism based on error correction codes (ECC), able to modify its behavior when the error conditions change without increasing the redundancy. As a case example, we have designed a mechanism that can detect intermittent faults and swap from an initial generic ECC to a specific ECC capable of tolerating one intermittent fault. We have inserted the mechanism in the memory system of a 32-bit RISC processor and validated it by using VHDL simulation-based fault injection. We have used two (39, 32) codes: a single error correction–double error detection (SEC–DED) and a code developed by our research group, called EPB3932, capable of correcting single errors and double and triple adjacent errors that include a bit previously tagged as error-prone. The results of injecting transient, intermittent, and combinations of intermittent and transient faults show that the proposed mechanism works properly. As an example, the percentage of failures and latent errors is 0% when injecting a triple adjacent fault after an intermittent stuck-at fault. We have synthesized the adaptive fault tolerance mechanism proposed in two types of FPGAs: non-reconfigurable and partially reconfigurable. In both cases, the overhead introduced is affordable in terms of hardware, time and power consumption.


Sign in / Sign up

Export Citation Format

Share Document