Light scattering by large particles: physical optics and the shadow-forming field

2013 ◽  
pp. 115-138 ◽  
Author(s):  
Anatoli G. Borovoi
Author(s):  
Alexander Konoshonkin ◽  
Anatoli Borovoi ◽  
Natalia Kustova ◽  
Hajime Okamoto ◽  
Hiroshi Ishimoto ◽  
...  

1986 ◽  
Vol 33 (8) ◽  
pp. 1001-1022 ◽  
Author(s):  
Jean-Marie Perrin ◽  
Philippe L. Lamy

Author(s):  
Lin Jin ◽  
Curtis W Jarand ◽  
Mark L Brader ◽  
Wayne F Reed

Abstract Dynamic light scattering (DLS) is widely used for analyzing biological polymers and colloids. Its application to nanoparticles in medicine is becoming increasingly important with the recent emergence of prominent lipid nanoparticle-(LNP)based products, such as the SARS-CoV-2 vaccines from Pfizer, Inc.-BioNTech (BNT162b2) and Moderna, Inc. (mRNA-1273). DLS plays an important role in the characterization and quality control of nanoparticle-based therapeutics and vaccines. However, most DLS instruments have a single detection angle ,and the amplitude of the scattering vector, q, varies among them according to the relationship q=(n/sin(/2) where 0 is the laser wavelength. Results for identical, polydisperse samples among instruments of varying q yield different hydrodynamic diameters, because, as particles become larger they scatter less light at higher angles, so that higher-q instruments will under-sample large particles in polydisperse populations, and report higher z-average diffusion coefficients, and hence smaller effective hydrodynamic diameters than lower-q instruments. As particle size reaches the Mie regime the scattering envelope manifests angular maxima and minima, and the monotonic decrease of average size versus q is lost. This work examines results for different q-value instruments, using mixtures of monodisperse latex sphere standards, for which experimental measurements agree well with computations, and also polydisperse solutions of LNP, for which results follow expected trends. Mie effects on broad unimodal populations are also considered. There is no way to predict results between two instruments with different q for samples of unknown particle size distributions.


Author(s):  
Zhenhua Ma ◽  
Henk G. Merkus ◽  
Jan G. A. E. de Smet ◽  
Peter J. T. Verheijen ◽  
Brian Scarlett

1961 ◽  
Vol 10 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Gerald S. Gotterer ◽  
Thomas E. Thompson ◽  
Albert L. Lehninger

Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation.


Sign in / Sign up

Export Citation Format

Share Document