laser wavelength
Recently Published Documents


TOTAL DOCUMENTS

951
(FIVE YEARS 171)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Adawiya Haider ◽  
Ghalib Ali ◽  
Mohammed Haider ◽  
Amer Dheyab ◽  
Amin Thamir

Abstract Pulsed Laser Deposition (PLD) technique was performed to deposit the pure Titanium oxide (TiO2) nanoparticles on the glass substrate of temp. (100 - 400°C), using the doubled frequency of Nd: YAG laser wavelength of 532nm at (10) Hz rate, 10 nanosecond duration pulses and a constant laser energy 800 mJ. The optical measurements obtained by UV-Vis transmittance on deposited TiO2 films indicate the highest transparency in the visible wavelength region with an average transmittance of 80%. Estimated the relationship between the refractive index of TiO2 thin films with substrate temperature was n = 2.49 at 400 oC. Moreover, the calculated empirical relation between the energy gap and refractive index have similar to the work results.


2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 


2022 ◽  
Vol 52 (1) ◽  
pp. 78-82
Author(s):  
N Yu Ignat'eva ◽  
O L Zakharkina ◽  
A P Sviridov ◽  
K V Mazaishvili ◽  
A B Shekhter

Abstract Experiments modelling endovenous laser obliteration (EVLO) are performed. As a result, laser radiation powers Pc at which collagen denaturation, tissue necrosis, and vasa vasorum destruction occur throughout the entire venous-wall thickness and, at the same time, the surrounding tissues are not subjected to unnecessary heating, are found. The main criterion for determining Pc is the achievement of 100% denaturation of venous-wall proteins, confirmed by morphological and calorimetric analysis. The Pc values for laser wavelengths of 1.47, 1.56, and 1.68 mm are found to be 6.0 ± 0.2, 5.0 ± 0.2, and 6.0 ± 0.2 W, respectively. It is established for all wavelengths in use that the temperature of the external venous-wall surface reaches 91 plusmn; 2 deg;C at the corresponding power Pc. We relate the dependence of Pc on the radiation wavelength to the formation of a coagulum on the optical fibre tip moving through a blood-filled vessel. The achievement of temperature necessary for coagulum formation is determined by the simultaneously occurring processes of energy absorption and its dissipation in the form of heat. These processes become more intense with an increase in the absorption coefficient of the medium. A mechanism is proposed to explain the relationship between the Pc value and laser wavelength, based on the influence of the absorption coefficient of medium (blood) on the temperature near the fibre tip.


Author(s):  
Lin Jin ◽  
Curtis W Jarand ◽  
Mark L Brader ◽  
Wayne F Reed

Abstract Dynamic light scattering (DLS) is widely used for analyzing biological polymers and colloids. Its application to nanoparticles in medicine is becoming increasingly important with the recent emergence of prominent lipid nanoparticle-(LNP)based products, such as the SARS-CoV-2 vaccines from Pfizer, Inc.-BioNTech (BNT162b2) and Moderna, Inc. (mRNA-1273). DLS plays an important role in the characterization and quality control of nanoparticle-based therapeutics and vaccines. However, most DLS instruments have a single detection angle ,and the amplitude of the scattering vector, q, varies among them according to the relationship q=(n/sin(/2) where 0 is the laser wavelength. Results for identical, polydisperse samples among instruments of varying q yield different hydrodynamic diameters, because, as particles become larger they scatter less light at higher angles, so that higher-q instruments will under-sample large particles in polydisperse populations, and report higher z-average diffusion coefficients, and hence smaller effective hydrodynamic diameters than lower-q instruments. As particle size reaches the Mie regime the scattering envelope manifests angular maxima and minima, and the monotonic decrease of average size versus q is lost. This work examines results for different q-value instruments, using mixtures of monodisperse latex sphere standards, for which experimental measurements agree well with computations, and also polydisperse solutions of LNP, for which results follow expected trends. Mie effects on broad unimodal populations are also considered. There is no way to predict results between two instruments with different q for samples of unknown particle size distributions.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015802
Author(s):  
M Němec ◽  
P Boháček ◽  
R Švejkar ◽  
J Šulc ◽  
J Kratochvíl ◽  
...  

Abstract The main goal of this work was to present spectroscopic and laser characteristics including the wavelength tunability of Er-doped Gd3Ga3Al2O12 (Er:GGAG) crystal. Seven Er:GGAG crystals of various Er/Gd concentrations were investigated. The maximum output peak power of 0.99 W with an absorbed pumping peak power amplitude of 5.22 W for the crystal at 0.55 at.% Er/Gd concentration was researched. The tuning was accomplished using a SiO2 birefringent plate. The laser wavelength was tunable in three eye-safe spectral bands from 1609 to 1650 nm.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8257
Author(s):  
Wanjin Zhang ◽  
Ping Lu ◽  
Zhiyuan Qu ◽  
Jiangshan Zhang ◽  
Qiang Wu ◽  
...  

A passive homodyne phase demodulation technique based on a linear-fitting trigonometric-identity-transformation differential cross-multiplication (LF-TIT-DCM) algorithm is proposed. This technique relies on two interferometric signals whose interferometric phase difference is odd times of π. It is able to demodulate phase signals with a large dynamic range and wide frequency band. An anti-phase dual wavelength demodulation system is built to prove the LF-TIT-DCM algorithm. Comparing the traditional quadrature dual wavelength demodulation system with an ellipse fitting DCM (EF-DCM) algorithm, the phase difference of two interferometric signals of the anti-phase dual wavelength demodulation system is set to be π instead of π/2. This technique overcomes the drawback of EF-DCM—that it is not able to demodulate small signals since the ellipse degenerates into a straight line and the ellipse fitting algorithm is invalidated. Experimental results show that the dynamic range of the proposed anti-phase dual wavelength demodulation system is much larger than that of the traditional quadrature dual wavelength demodulation system. Moreover, the proposed anti-phase dual wavelength demodulation system is hardly influenced by optical power, and the laser wavelength should be strictly limited to lower the reference error.


2021 ◽  
Vol 11 (23) ◽  
pp. 11537
Author(s):  
Yu Ding ◽  
Tongyu Liu ◽  
Mengmeng Yan

Ho: GdVO4 crystal is the host material for the production of laser working in the middle infrared range. In this contribution, the characteristic parameters of the Ho: GdVO4 crystal were measured, and the material was used as a gain medium to build a diode-pumped laser for the first time, to reach a laser output at 2047.9 nm. The output beam quality factor M2 was measured to be 1.4 and 1.3 in x-direction and y-direction, respectively. In addition, the influence of the transmittance of the output mirror on the generation of laser was obtained through exploration. The results showed that the laser wavelength blue-shifted as the output transmittance increased.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7330
Author(s):  
Stella Maragkaki ◽  
Panagiotis C. Lingos ◽  
George D. Tsibidis ◽  
George Deligeorgis ◽  
Emmanuel Stratakis

The efficiency of light coupling to surface plasmon polariton (SPP) represents a very important issue in plasmonics and laser fabrication of topographies in various solids. To illustrate the role of pre-patterned surfaces and impact of laser polarisation in the excitation of electromagnetic modes and periodic pattern formation, Nickel surfaces are irradiated with femtosecond laser pulses of polarisation perpendicular or parallel to the orientation of the pre-pattern ridges. Experimental results indicate that for polarisation parallel to the ridges, laser induced periodic surface structures (LIPSS) are formed perpendicularly to the pre-pattern with a frequency that is independent of the distance between the ridges and periodicities close to the wavelength of the excited SPP. By contrast, for polarisation perpendicular to the pre-pattern, the periodicities of the LIPSS are closely correlated to the distance between the ridges for pre-pattern distance larger than the laser wavelength. The experimental observations are interpreted through a multi-scale physical model in which the impact of the interference of the electromagnetic modes is revealed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Jun Gu ◽  
Masakatsu Murakami

AbstractSpontaneous magnetic field generation plays important role in laser-plasma interactions. Strong quasi-static magnetic fields affect the thermal conductivity and the plasma dynamics, particularly in the case of ultra intense laser where the magnetic part of Lorentz force becomes as significant as the electric part. Kinetic simulations of giga-gauss magnetic field amplification via a laser irradiated microtube structure reveal the dynamics of charged particle implosions and the mechanism of magnetic field growth. A giga-gauss magnetic field is generated and amplified with the opposite polarity to the seed magnetic field. The spot size of the field is comparable to the laser wavelength, and the lifetime is hundreds of femtoseconds. An analytical model is presented to explain the underlying physics. This study should aid in designing future experiments.


Sign in / Sign up

Export Citation Format

Share Document