Location Based Robust Audio Watermarking Algorithm for Social TV System

Author(s):  
Di Chang ◽  
Xia Zhang ◽  
Qiong Liu ◽  
Ge Gao ◽  
Yue Wu
Keyword(s):  
2013 ◽  
Vol 10 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Christopher Buschow ◽  
Beate Schneider ◽  
Lisa Carstensen ◽  
Martin Heuer ◽  
Anika Schoft

Fernsehsender, Start-Ups und Hardware-Hersteller setzen in zunehmendem Umfang auf soziale Interaktion während des Fernsehens – und erhoffen sich mit „Social TV“ einen Weg zur ‚Rettung‘ des linearen Fernsehens und der Erschließung neuer Geschäftsfelder. Auf der Grundlage von 34 leitfadengestützten Experteninterviews mit Marktteilnehmern diskutiert der Beitrag das Marktumfeld von Social TV und seine Perspektiven in Deutschland. Der Fokus liegt auf Nutzerinnen und Nutzern, spezifischen Fernsehformaten sowie auf technologischen Entwicklungen, zukünftigen Geschäftsmodellen sowie den damit verbundenen Chancen und Risiken von Social TV.


2013 ◽  
Vol 10 (4) ◽  
pp. 48-57 ◽  
Author(s):  
Christopher Buschow ◽  
Beate Schneider ◽  
Kira Drabner ◽  
Alena Bauer ◽  
Lisa Carstensen
Keyword(s):  

Social TV ist kein Phänomen, das von kapitalstarken Organisationen in Innovationsprozessen strategisch entwickelt wurde. Es entstand vielmehr in der Alltagspraxis von Nutzern, die neue Möglichkeitsräume in digitalen Medien erschlossen haben. Der Beitrag stellt Ergebnisse einer Befragung dieser Lead User vor und gibt Auskunft über ihre Nutzungsgewohnheiten, ihre technologische Ausstattung, genutzte Plattformen und Genrepräferenzen. Vergleichend werden Ergebnisse einer Untersuchung von Nichtnutzern herangezogen. Auf Basis der empirischen Erkenntnisse können Handlungsoptionen für die Marktteilnehmer, insbesondere für Fernsehunternehmen, abgeleitet werden.


Author(s):  
IRMA SAFITRI ◽  
NUR IBRAHIM ◽  
HERLAMBANG YOGASWARA

ABSTRAKPenelitian ini mengembangkan teknik Compressive Sensing (CS) untuk audio watermarking dengan metode Lifting Wavelet Transform (LWT) dan Quantization Index Modulation (QIM). LWT adalah salah satu teknik mendekomposisi sinyal menjadi 2 sub-band, yaitu sub-band low dan high. QIM adalah suatu metode yang efisien secara komputasi atau perhitungan watermarking dengan menggunakan informasi tambahan. Audio watermarking dilakukan menggunakan file audio dengan format *.wav berdurasi 10 detik dan menggunakan 4 genre musik, yaitu pop, classic, rock, dan metal. Watermark yang disisipkan berupa citra hitam putih dengan format *.bmp yang masing-masing berukuran 32x32 dan 64x64 pixel. Pengujian dilakukan dengan mengukur nilai SNR, ODG, BER, dan PSNR. Audio yang telah disisipkan watermark, diuji ketahanannya dengan diberikan 7 macam serangan berupa LPF, BPF, HPF, MP3 compression, noise, dan echo. Penelitian ini memiliki hasil optimal dengan nilai SNR 85,32 dB, ODG -8,34x10-11, BER 0, dan PSNR ∞.Kata kunci: Audio watermarking, QIM, LWT, Compressive Sensing. ABSTRACTThis research developed Compressive Sensing (CS) technique for audio watermarking using Wavelet Transform (LWT) and Quantization Index Modulation (QIM) methods. LWT is one technique to decompose the signal into 2 sub-bands, namely sub-band low and high. QIM is a computationally efficient method or watermarking calculation using additional information. Audio watermarking was done using audio files with *.wav format duration of 10 seconds and used 4 genres of music, namely pop, classic, rock, and metal. Watermark was inserted in the form of black and white image with *.bmp format each measuring 32x32 and 64x64 pixels. The test was done by measuring the value of SNR, ODG, BER, and PSNR. Audio that had been inserted watermark was tested its durability with given 7 kinds of attacks such as LPF, BPF, HPF, MP3 Compression, Noise, and Echo. This research had optimal result with SNR value of 85.32 dB, ODG value of -8.34x10-11, BER value of 0, and PSNR value of ∞.Keywords: Audio watermarking, QIM, LWT, Compressive Sensing.


2014 ◽  
Vol 39 (8) ◽  
pp. 1321-1329 ◽  
Author(s):  
Xiong-Hua HUANG ◽  
Hong-Xia WANG ◽  
Wei-Zhen JIANG ◽  
Geng-Shen CUI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document