A Full-functional Simulation and Test Platform for Rotorcraft Unmanned Aerial Vehicle Autonomous Control

Author(s):  
Ziming Wang ◽  
Dalei Song ◽  
Juntong Qi ◽  
Jianda Han ◽  
Yu Miao ◽  
...  
2020 ◽  
Vol 53 (3-4) ◽  
pp. 711-718
Author(s):  
Yao Lei ◽  
Mingxin Cheng

In this paper, an attempt was made to obtain the aerodynamic performance of a Hex-rotor unmanned aerial vehicle with different rotor spacing. The hover efficiency of the Hex-rotor unmanned aerial vehicle is analyzed by both experimental tests and numerical simulations. First, a series of index to characterize the aerodynamic performance of the Hex-rotor unmanned aerial vehicle are analyzed theoretically, and then both tests and simulations on a Hex-rotor unmanned aerial vehicle with different rotor spacing ratio ( i = 0.50, 0.56, 0.63, 0.71, 0.83) were presented in details. For a custom-designed test platform, the thrust, power loading and hover efficiency of the Hex-rotor unmanned aerial vehicle were obtained in this paper. Finally, computational fluid dynamics simulations are performed to obtain the streamline distributions of the flow field, pressure and velocity contour of the Hex-rotor unmanned aerial vehicle. Results show that the aerodynamic performance of the Hex-rotor unmanned aerial vehicle is varied by changing the rotor spacing. Specifically, the smaller rotor spacing may improve the aerodynamic performance of the Hex-rotor unmanned aerial vehicle by increasing the rotor interferences. In the meantime, the effects of mutual interference between the rotors are gradually reduced with the increase of the rotor spacing. Moreover, the uniformity of the streamline distribution, the shape and the symmetry of the vortex are necessary conditions for the Hex-rotor unmanned aerial vehicle to generate a larger thrust. It was also noted that the thrust increased by 5.61% and the overall efficiency increased by about 8.37% at i = 0.63 for the working mode (2200 r/min), which indicated that the rotor spacing ratio at i = 0.63 obtained a best aerodynamic performance.


2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Abid Raza ◽  
Fahad Mumtaz Malik ◽  
Rameez Khan ◽  
Naveed Mazhar ◽  
Hameed Ullah ◽  
...  

A nonlinear control technique for autonomous control of a tri-rotor unmanned aerial vehicle is presented in this paper. First, a comprehensive mathematical model is developed using the Newton–Euler approach for a tri-rotor, which is found to be highly nonlinear and coupled. Then, the equivalent input affine model is extracted by applying a suitable transformation. Finally, the sliding mode control for trajectory tracking is chosen which is immune to matched external disturbances, parametric uncertainties, and modeling errors. The proposed controller performance has been verified for appropriate inputs under wind disturbances using MATLAB, and the simulation results are presented.


Author(s):  
Rashidah Funke Olanrewaju ◽  
Rafhanah Shazwani Binti Rosli ◽  
Balogun Wasiu Adebayo

Sign in / Sign up

Export Citation Format

Share Document