Puromycin Sensitivity of Ribosomal Label after Incorporation of 14-C-Amino-Acids into Isolated Mitochondria from Neurospora crassa

1969 ◽  
pp. 155-158
Author(s):  
W. Neupert
Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


1973 ◽  
Vol 134 (2) ◽  
pp. 431-436 ◽  
Author(s):  
W. Ferdinand ◽  
W. Bartley ◽  
V. Broomhead

Amino acid analyses of mitochondrial membranes are compared with the amino acid composition of whole mitochondria (Alberti, 1964) and found to be very similar except in the cystine content. The composition of the endogenous amino acids found in freshly prepared mitochondria has been established and shown to differ considerably from the amino acid composition of membranes or whole mitochondria. The amino acids produced during anaerobic incubation of mitochondria at pH7.4, on the other hand, resemble the membrane in composition, supporting the view that neutral proteinase activity is responsible for their appearance. Aerobic incubation produces a similar pattern of amino acids except that amino acids such as proline, serine, asparagine, glutamic acid and glutamine, which can be metabolically utilized under aerobic conditions, are present to a smaller extent. The presence of large relative concentrations of endogenous taurine, cysteic acid and oxidized glutathione and the accumulation of taurine during incubation is found. The selective retention of taurine and cysteic acid within the mitochondria is established. It is proposed that the first step in the degeneration of isolated mitochondria results from lipid hydroperoxide accumulation caused by the lack of glutathione reductase in isolated mitochondria.


1972 ◽  
Vol 128 (1) ◽  
pp. 29-40 ◽  
Author(s):  
M. T. Clandinin ◽  
E. A. Cossins

1. Mitochondria were extracted from 4-day-old pea cotyledons and purified on a sucrose density gradient. 2. Microbiological assay of the purified mitochondrial fraction with Lactobacillus casei (A.T.C.C. 7469), Streptococcus faecalis (A.T.C.C. 8043) and Pediococcus cerevisiae (A.T.C.C. 8081) revealed a discrete pool of conjugated and unconjugated derivatives of tetrahydropteroylglutamic acid. 3. Solubilization and chromatographic studies of the mitochondrial fraction demonstrated the presence of formylated and methylated derivatives, 10-formyltetrahydropteroylmonoglutamic acid, 5-formyltetrahydropteroylmonoglutamic acid and 5-formyltetrahydropteroyldiglutamic acid being the major derivatives present. 4. The principal mitochondrial pteroylglutamates were labelled when dry seeds were allowed to imbibe [2-14C]pteroylglutamic acid and 5-[methyl-14C]-methyltetrahydropteroylmonoglutamic acid. 5. The ability of isolated mitochondria to catalyse oxidation and reduction of tetrahydropteroylglutamic acid derivatives was demonstrated in feeding experiments in which [14C]formaldehyde, [3-14C]serine, sodium [14C]formate, 5-[methyl-14C]methyltetrahydropteroylmonoglutamic acid or [2-14C]-glycine served as C1 donor. In addition,14C was incorporated into free amino acids related to C1 metabolism.


1990 ◽  
Vol 10 (11) ◽  
pp. 5839-5848
Author(s):  
S Kang ◽  
R L Metzenberg

In response to phosphorus starvation, Neurospora crassa makes several enzymes that are undetectable or barely detectable in phosphate-sufficient cultures. The nuc-1+ gene, whose product regulates the synthesis of these enzymes, was cloned and sequenced. The nuc-1+ gene encodes a protein of 824 amino acids with a predicted molecular weight of 87,429. The amino acid sequence shows homology with two yeast proteins whose functions are analogous to that of the NUC-1 protein. Two nuc-1+ transcripts of 3.2 and 3.0 kilobases were detected; they were present in similar amounts during growth at low or high phosphate concentrations. The nuc-2+ gene encodes a product normally required for NUC-1 function, and yet a nuc-2 mutation can be complemented by overexpression of the nuc-1+ gene. This implies physical interactions between NUC-1 protein and the negative regulatory factor(s) PREG and/or PGOV. Analysis of nuc-2 and nuc-1; nuc-2 strains transformed by the nuc-1+ gene suggests that phosphate directly affects the level or activity of the negative regulatory factor(s) controlling phosphorus acquisition.


1990 ◽  
Vol 10 (11) ◽  
pp. 5839-5848 ◽  
Author(s):  
S Kang ◽  
R L Metzenberg

In response to phosphorus starvation, Neurospora crassa makes several enzymes that are undetectable or barely detectable in phosphate-sufficient cultures. The nuc-1+ gene, whose product regulates the synthesis of these enzymes, was cloned and sequenced. The nuc-1+ gene encodes a protein of 824 amino acids with a predicted molecular weight of 87,429. The amino acid sequence shows homology with two yeast proteins whose functions are analogous to that of the NUC-1 protein. Two nuc-1+ transcripts of 3.2 and 3.0 kilobases were detected; they were present in similar amounts during growth at low or high phosphate concentrations. The nuc-2+ gene encodes a product normally required for NUC-1 function, and yet a nuc-2 mutation can be complemented by overexpression of the nuc-1+ gene. This implies physical interactions between NUC-1 protein and the negative regulatory factor(s) PREG and/or PGOV. Analysis of nuc-2 and nuc-1; nuc-2 strains transformed by the nuc-1+ gene suggests that phosphate directly affects the level or activity of the negative regulatory factor(s) controlling phosphorus acquisition.


Sign in / Sign up

Export Citation Format

Share Document